Как умножать степени, умножение степеней с разными показателями. Умножение чисел в степени с разными основаниями


Как умножить степени с разными основаниями и показателями?

1) Если умножаются 2 числа с одинаковыми основаниями, но разными показателями, то общее основание возводится в сумму степеней.:

Пример3⁴*3³=3⁴⁺³=3⁷

2) Если основания разные, а показатели одинаковые. В этом случае мы возводим в степень произведение оснований.aⁿ*bⁿ=(ab)ⁿ

Пример:5²*2²=(5*2)²=10²=1003) Если основания разные и показатели разные, то тут 2 варианта:1. Выделяем одинаковое основание, т.е. раскладываем один из множителей.

Представим число b=a*c

Пример

2. Приводим к общему показателю:

Пример

Оцени ответ

nebotan.com

Как умножать степени | Алгебра

Как умножать степени? Какие степени можно перемножить, а какие — нет? Как число умножить на степень?

В алгебре найти произведение степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели — сложить:

    \[{a^m} \cdot {a^n} = {a^{m + n}}\]

При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

    \[{a^n} \cdot {b^n} = {(ab)^n}\]

Рассмотрим, как умножать степени, на конкретных примерах.

    \[1){a^9} \cdot {a^5} = {a^{9 + 5}} = {a^{14}};\]

Единицу в показателе степени не пишут, но при умножении степеней — учитывают:

    \[2){b^7} \cdot b = {b^{7 + 1}} = {b^8};\]

При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

    \[3){c^3}{c^{11}}{c^7} = {c^{3 + 11 + 7}} = {c^{21}};\]

    \[4){x^{10}}{x^2}{x^4}{x^{17}} = {x^{10 + 2 + 4 + 17}} = {x^{33}};\]

    \[5){a^4} \cdot {b^4} = {(ab)^4};\]

    \[6){x^{12}} \cdot {y^{12}} \cdot {z^{12}} = {(xyz)^{12}}.\]

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом — умножение:

    \[7)10 \cdot {5^3} = 10 \cdot 125 = 1250;\]

    \[8)0,002 \cdot {3^4} = 0,002 \cdot 81 = 0,162.\]

www.algebraclass.ru

Умножение и деление чисел со степенями

Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться таблицей степеней натуральных чисел от 2 до 25 по алгебре. А сейчас мы более подробно остановимся на свойствах степеней.

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

А теперь используем правило возведения числа в степень. 16=42, или 24, 64=43, или 26, в то же время 1024=64=45, или 210.

Следовательно, нашу задачу можно записать по-другому: 42х43=45 или 24х26=210, и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени, или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 24х22х214=220.

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого. Таким образом, 25:23=22, что в обычных числах равно 32:8=4, то есть 22. Подведем итоги:

amх an=am+n, am: an=am-n, где m и n — целые числа.

С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 23 и 24, но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 23х32, и в этом случае мы не можем суммировать экспоненты. Ни 25 и ни 35 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

Для того чтобы легче было двигаться дальше, давайте подробнее рассмотрим понятие экспоненты и попробуем дать ей более обобщенное толкование.

До сих пор мы считали, что экспонента – это количество одинаковых сомножителей. В этом случае минимальная величина экспоненты – это 2. Однако если мы производим операцию деления чисел, или вычитания экспонент, то можем получить также число меньше 2, значит, старое определение нас больше не может устроить. Подробнее читайте в следующей статье.

Материалы по теме:

Поделиться с друзьями:

Загрузка...

matemonline.com

Свойства степеней | Алгебра

Основные свойства степеней задаются формулами:

    \[1){a^m} \cdot {a^n} = {a^{m + n}}\]

(При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели степеней складывают).

    \[2){a^m}:{a^n} = {a^{m - n}}\]

(При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя).

    \[3){({a^m})^n} = {a^{m \cdot n}}\]

(При возведении степени в степень основание оставляют прежним, а показатели перемножают).

    \[4){(ab)^n} = {a^n}{b^n}\]

(При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают).

    \[5){(\frac{a}{b})^n} = \frac{{{a^n}}}{{{b^n}}}\]

(При возведении в степень частного возводят в эту степень и делимое, и делитель, результаты делят).

Кроме того,

    \[{a^0} = 1\]

(где a≠0)

    \[{a^1} = a\]

Если n — натуральное число, то

    \[{a^{ - n}} = \frac{1}{{{a^n}}},\]

в частности,

    \[{a^{ - 1}} = \frac{1}{a}\]

    \[{(\frac{a}{b})^{ - n}} = {(\frac{b}{a})^n},\]

в частности,

    \[{(\frac{a}{b})^{ - 1}} = \frac{b}{a}\]

Для a>0

    \[{a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\]

В частности,

    \[{a^{\frac{1}{2}}} = \sqrt a .\]

    \[\begin{array}{l} npu\\ {\rm{r}} > {0,0^r} = 0. \end{array}\]

В школьном курсе алгебры свойства степеней изучаются на протяжении нескольких лет: сначала для степени с натуральным показателем, затем — для степени с целым показателем,  далее — для степени с рациональным и иррациональным показателем.

Свойства степеней с натуральным и целым показателем верны и для степеней с рациональными и иррациональными показателем, но накладывается дополнительное условие: основания степеней в этом случае должны быть положительными.

По определению,  для любого α

    \[{1^\alpha } = 1.\]

www.algebraclass.ru

Как умножать и делить степени? Что делают при умножении и делении степеней?

Если говорить простыми словами, то возведение числа в степень - это операция, при которой число многократно умножается само на себя.

Здесь число a - это основание степени, а число n - это показатель степени.

Умножение степеней.

При умножении степеней их основания могут совпадать, а могут различаться.

_

Сначала рассмотрим, как умножать степени с одинаковыми основаниями.

Для этого нужно сложить показатели степеней, а основания оставить без изменений.

Здесь a - основание степеней, а n и m - показатели.

Например:

6² * 6³ = 6^5 = 7776.

Проверить эту формулу очень легко - достаточно возвести в степень каждый множитель, а затем перемножить полученные числа.

6² * 6³ = (6*6) * (6*6*6) = 36 * 216 = 7776.

_

Теперь об умножении степеней с разными основаниями.

Здесь возможны 3 варианта:

1) Основания степеней различаются, но показатели совпадают.

В этом случае нужно перемножить основания и возвести их в указанную степень.

Например:

5³ * 6³ = (5 * 6)³ = 30³ = 27000.

2) Основания и показатели различаются, но имеется возможность привести степени к одному основанию.

Например:

9² * 81².

Здесь 81 можно представить в виде 9².

Поэтому 81² = (9²)² = 9^4 (при возведении степени в степень показатели перемножаются).

В итогу получим, что 9² * 81² = 9^2 * 9^4 = 9^6 = 531441.

3) Основания и показатели различаются, но можно привести данные степени к одному показателю.

Например:

5² * 8^4.

8^4 можно представить как 8² * 8².

Поэтому:

5² * 8^4 = 5² * 8² * 8² = (5*8*8)² = 320² = 102400.

4) Основания и показатели различаются, возможность приведения степеней к одному основанию и показателю отсутствует.

Например:

3² * 7³.

Основания и показатели в этом случае являются простыми числами. Поэтому здесь единственный вариант - возводить в степень каждый множитель отдельно, а затем перемножать результаты.

3² * 7³ = 9 * 343 = 3087.

Деление степеней.

Здесь всё по аналогии с умножением - основания степеней бывают одинаковыми, а бывают разными.

_

Если вы выполняете деление степеней с одинаковыми основаниями, то нужно делать следующее:

Основания оставить без изменений, а показатели степеней отнять друг от друга.

Например:

7³ : 7² = 7^1 = 7.

Проверка выполняется описанным выше способом:

7³ : 7² = 343 : 49 = 7.

_

Что касается деления степеней с разными основаниями, то здесь все принципы будут аналогичны умножению.

Если основания и показатели степеней - простые числа, то нужно отдельно возводить в степень делимое и делитель.

В ином случае степени можно привести либо к одному основанию, либо к одному показателю.

Вот несколько примеров:

4² : 2^4 = 4² : (2²)² = 4² : 4² = 1.

10³ : 5³ = (10 : 5)³ = 2³ = 8.

9³ : 2^6 = 9³ : (2³ * 2³) = 4,5³ : 2³ = 2,25³ = 11,390625.

www.bolshoyvopros.ru

Как умножать степени, умножение степеней с разными показателями

#1

Каждая арифметическая операция порою становится слишком громоздкой для записи и её стараются упростить. Когда-то так было и с операцией сложения. Людям было необходимо проводить многократное однотипное сложение, например, посчитать стоимость ста персидских ковров, стоимость которого составляет 3 золотые монеты за каждый. Приходилось записывать 3+3+3+…+3 = 300. Из-за громоздкости было придумано сократить запись до 3 * 100 = 300. Фактически, запись «три умножить на сто» означает, что нужно взять сто троек и сложить между собой. Умножение прижилось, обрело общую популярность. Но мир не стоит на месте, и в средних веках возникла необходимость проводить многократное однотипное умножение. Вспоминается старая индийская загадка о мудреце, попросившем в награду за выполненную работу пшеничные зёрна в следующем количестве: за первую клетку шахматной доски он просил одно зерно, за вторую – два, третью – четыре, пятую – восемь и так далее. Так появилось первое умножение степеней, ведь количество зёрен было равно двойке в степени номера клетки. К примеру, на последней клетке было бы 2*2*2*…*2 = 2^63 зёрен, что равно числу длиной в 18 знаков, в чём, собственно, и кроется смысл загадки.

#2

Операция возведения в степень прижилась довольно быстро, также быстро возникла необходимость проводить сложение, вычитание, деление и умножение степеней. Последнее и стоит рассмотреть более подробно. Формулы для сложения степеней просты и легко запоминаются. К тому же, очень легко понять, откуда они берутся, если операцию степени заменить умножением. Но сначала следует разобраться в элементарной терминологии. Выражение a^b (читается «а в степени b») означает, что число a следует умножить само на себя b раз, причём «a» называется основанием степени, а «b» - степенным показателем. Если основания степеней одинаковые, то формулы выводятся совсем просто. Конкретный пример: найти значение выражения 2^3 * 2^4. Чтобы знать, что должно получиться, следует перед началом решения узнать ответ на компьютере. Забив данное выражение в любой онлайн-калькулятор, поисковик, набрав "умножение степеней с разными основаниямии одинаковыми" или математический пакет, на выходе получится 128. Теперь распишем данное выражение: 2^3 = 2*2*2, а 2^4 = 2*2*2*2. Получается, что 2^3 * 2^4 = 2*2*2*2*2*2*2 = 2^7 = 2^(3+4) . Выходит, что произведение степеней с одинаковым основанием равно основанию, возведённому в степень, равную сумме двух предыдущих степеней.

#3

Можно подумать, что это случайность, но нет: любой другой пример сможет лишь подтвердить данное правило. Таким образом, в общем виде формула выглядит следующим образом: a^n * a^m = a^(n+m) . Также существует правило, что любое число в нулевой степени равно единице. Здесь следует вспомнить правило отрицательных степеней: a^(-n) = 1 / a^n. То есть, если 2^3 = 8, то 2^(-3) = 1/8. Используя это правило можно доказать справедливость равенства a^0 = 1: a^0 = a^(n-n) = a^n * a^(-n) = a^(n) * 1/a^(n) , a^(n) можно сократить и остаётся единица. Отсюда выводится и то правило, что частное степеней с одинаковыми основаниями равно этому основанию в степени, равной частному показателя делимого и делителя: a^n : a^m = a^(n-m) . Пример: упростить выражение 2^3 * 2^5 * 2^(-7) *2^0 : 2^(-2) . Умножение является коммутативной операцией, следовательно сначала следует произвести сложение показателей умножения: 2^3 * 2^5 * 2^(-7) *2^0 = 2^(3+5-7+0) = 2^1 =2. Далее следует разобраться с делением на отрицательную степень. Необходимо вычесть показатель делителя из показателя делимого: 2^1 : 2^(-2) = 2^(1-(-2) ) = 2^(1+2) = 2^3 = 8. Оказывается, операция деления на отрицательную степень тождественна операции умножения на аналогичный положительный показатель. Таким образом, окончательный ответ равен 8.

#4

Существуют примеры, где имеет место не каноническое умножение степеней. Перемножить степени с разными основаниями очень часто бывает гораздо сложнее, а порой и вообще невозможно. Следует привести несколько примеров различных возможных приёмов. Пример: упростить выражение 3^7 * 9^(-2) * 81^3 * 243^(-2) * 729. Очевидно, имеет место умножение степеней с разными основаниями. Но, следует отметить, что все основания являются различными степенями тройки. 9 = 3^2,1 = 3^4,3 = 3^5,9 = 3^6. Используя правило (a^n) ^m = a^(n*m) , следует переписать выражение в более удобном виде: 3^7 * (3^2) ^(-2) * (3^4) ^3 * (3^5) ^(-2) * 3^6 = 3^7 * 3^(-4) * 3^(12) * 3^(-10) * 3^6 = 3^(7-4+12-10+6) = 3^(11) . Ответ: 3^11. В случаях, когда различные основания, на равные показатели работает правило a^n * b^n = (a*b) ^n. Например, 3^3 * 7^3 = 21^3. В остальном, когда различные основания и показатели, произвести полное умножение нельзя. Иногда можно частично упростить или прибегнуть к помощи вычислительной техники.

uznay-kak.ru

Умножение и деление степеней с одинаковыми основаниями

Умножение степеней с одинаковыми основаниями

При умножении степеней с одинаковыми основаниями их показатели складываются.

Рассмотрим, почему показатели складываются. Во-первых, возведение в степень - это сокращённая запись умножения:

23 = 2 · 2 · 2

Во-вторых, умножение числа самого на себя, имеющего при этом разные степени, означает, что это число берётся сомножителем столько раз, сколько указывают показатели степеней:

23 · 22 = (2 · 2 · 2) · (2 · 2) = 2 · 2 · 2 · 2 · 2 = 25
3 множ.2 множ.5 множ.

Из примера становится понятно, что при сложении показателей степеней, мы получаем общую сумму сомножителей, поэтому для любого выражения будет верна формула:

ax · ay = ax+y

Примеры умножения степеней

Пример 1. Запишите в виде степени:

n3n5

Решение:

n3n5 = n3 + 5 = n8

Пример 2. Упростите:

xy2z3x4y5z6

Решение: чтобы легче было провести умножение степеней с одинаковыми основаниями можно сначала сгруппировать степени по основаниям:

(xx4)(y2y5)(z3z6)

Теперь выполним умножение степеней:

(xx4)(y2y5)(z3z6) = (x1 + 4)(y2 + 5)(z3 + 6) = x5y7z9

Следовательно:

xy2z3x4y5z6 = x5y7z9

Пример 3. Выполните умножение:

а) nxn5;      б) xxn;      в) amam

Решение:

а) nxn5 = nx + 5               б) xxn = xn + 1                 в) amam = am + m = a2m

Пример 4. Упростите выражение:

а) -a2 · (-a)2 &middot a;      б) -(-a)2 · (-a) &middot a

Решение:

а) -a2 · (-a)2 &middot a = -a2 · a2 &middot a = -(a2a2a) = -(a2 + 2 + 1) = -a5 б) -(-a)2 · (-a) &middot a = -a2 · (-a) &middot a = a3 &middot a = a4

Деление степеней с одинаковыми основаниями

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.

Рассмотрим частное двух степеней с одинаковыми основаниями:

n12 : n5

где n – это число не равное нулю, так как на 0 делить нельзя. Запишем частное в виде дроби:

Представим n12 в виде произведения n7 · n5, тогда числитель и знаменатель дроби можно будет сократить на общий множитель n5:

n12 = n7 · n5 =  n7
n5n5

Верность совершённого действия легко проверить с помощью умножения:

n7 · n5 = n7+5 = n12

Следовательно, общая формула для деления степеней с одинаковым основанием будет выглядеть так:

ax : ay = ax-y

Примеры деления степеней

Пример 1. Частное степеней замените степенью с тем же основанием:

а) a5;      б) m18
am10

Решение:

а) a5 = a4 · a = a4
a a
б) m18 = m8 · m10 = m8
m10 m10

Пример 2. Выполните деление:

а) x7 : x2;      б) n10 : n5;      в) a30 : a10

Решение:

а) x7 : x2 = x7 - 2 = x5          б) n10 : n5 = n10 - 5 = n5      в) a30 : a10 = a30 - 10 = a20

Пример 3. Чему равно значение выражения:

а) an ;      б) mx ;      в) b5 · b8
a2mb3

Решение:

в) b5 · b8 = b2 · b3 · b8 = b2 · b8 = b10
b3b3

naobumium.info