Как посчитать процент отклонения в Excel по двум формулам. Расчет отклонений


Как посчитать процент отклонения в Excel по двум формулам

Понятие процент отклонения подразумевает разницу между двумя числовыми значениями в процентах. Приведем конкретный пример: допустим одного дня с оптового склада было продано 120 штук планшетов, а на следующий день – 150 штук. Разница в объемах продаж – очевидна, на 30 штук больше продано планшетов в следующий день. При вычитании от 150-ти числа 120 получаем отклонение, которое равно числу +30. Возникает вопрос: чем же является процентное отклонение?

Как посчитать отклонение в процентах в Excel

Процент отклонения вычисляется через вычитание старого значения от нового значения, а далее деление результата на старое значение. Результат вычисления этой формулы в Excel должен отображаться в процентном формате ячейки. В данном примере формула вычисления выглядит следующим образом (150-120)/120=25%. Формулу легко проверить 120+25%=150.

Обратите внимание! Если мы старое и новое число поменяем местами, то у нас получиться уже формула для вычисления наценки.

Ниже на рисунке представлен пример, как выше описанное вычисление представить в виде формулы Excel. Формула в ячейке D2 вычисляет процент отклонения между значениями продаж для текущего и прошлого года: =(C2-B2)/B2

Важно обратит внимание в данной формуле на наличие скобок. По умолчанию в Excel операция деления всегда имеет высший приоритет по отношению к операции вычитания. Поэтому если мы не поставим скобки, тогда сначала будет разделено значение, а потом из него вычитается другое значение. Такое вычисление (без наличия скобок) будет ошибочным. Закрытие первой части вычислений в формуле скобками автоматически повышает приоритет операции вычитания выше по отношению к операции деления.

Правильно со скобками введите формулу в ячейку D2, а далее просто скопируйте ее в остальные пустые ячейки диапазона D2:D5. Чтобы скопировать формулу самым быстрым способом, достаточно подвести курсор мышки к маркеру курсора клавиатуры (к нижнему правому углу) так, чтобы курсор мышки изменился со стрелочки на черный крестик. После чего просто сделайте двойной щелчок левой кнопкой мышки и Excel сам автоматически заполнит пустые ячейки формулой при этом сам определит диапазон D2:D5, который нужно заполнить до ячейки D5 и не более. Это очень удобный лайфхак в Excel.



Альтернативная формула для вычисления процента отклонения в Excel

В альтернативной формуле, вычисляющей относительное отклонение значений продаж с текущего года сразу делиться на значения продаж прошлого года, а только потом от результата отнимается единица: =C2/B2-1.

Как видно на рисунке результат вычисления альтернативной формулы такой же, как и в предыдущей, а значит правильный. Но альтернативную формулу легче записать, хот и возможно для кого-то сложнее прочитать так чтобы понять принцип ее действия. Или сложнее понять, какое значение выдает в результате вычисления данная формула если он не подписан.

Единственный недостаток данной альтернативной формулы – это отсутствие возможности рассчитать процентное отклонение при отрицательных числах в числителе или в заменителе. Даже если мы будем использовать в формуле функцию ABS, то формула будет возвращать ошибочный результат при отрицательном числе в заменителе.

Так как в Excel по умолчанию приоритет операции деления выше операции вычитания в данной формуле нет необходимости применять скобки.

exceltable.com

Как правильно рассчитать отклонение, и для чего это нужно

Для эффективного анализа данных и для нахождения проблемных участков в производстве необходимо находить отклонения в показателях. Отклонения бывают нескольких видов и отличаются как единицами измерения, так и способом получения, среди них можно выделить:

  • Стандартное отклонение;
  • Абсолютное отклонение;
  • Относительное отклонение;
  • Селективное отклонение;
  • Кумулятивное отклонение;
  • Отклонение во временном разрезе.

Как рассчитать отклонение в каждом случае, вы узнаете из этой статьи.

Как определить динамику изменения значений при отклонении

Нередко для того, чтобы понять насколько плавно изменяется тот или иной показатель на нескольких отрезках времени, простого среднего значения, сравниваемого с наименьшим или наибольшим числом из ряда – недостаточно. В таких случаях для более глубоко анализа применяется нахождение стандартного отклонения, показывающего более четко динамику изменения значений.

Пример:

Даны показатели затрат на средства уборки для двух заведений: 10, 21, 49, 15, 59 и 31, 29, 34, 27, 32, где средним значением будет 30,8 и 30,6. Показатели в среднем приблизительно одинаковы, однако даже визуально видно, что значения в одном заведении изменяются не равномерно, что их контроль производится от случая к случаю. Но для более полного представления необходимо найти стандартное отклонение. Оно будет равно: 19,51 и 2,4. При среднем значении в первом заведении 30,8 показатели отклоняются от него более чем существенно – 21,8, соответственно у вас есть подтверждение небрежного отношения к работе.

Рассчитывается оно следующим образом:

  1. Необходимо рассчитать среднее значение для проверяемого ряда данных. (10+21+49+15+59)/5=30,8
  2. Найти разницу между каждым показателем и средним значением. 10-30,8=-20,8; 21-30,8=9,8; 49-30,8=18,2; 15-30,8=15,8; 59-30,8=28,2
  3. Возвести каждое значение разницы в квадрат. -20,82=432,64; 9,82=96,04; 18,22=331,24; 15,82=249,64; 28,22=795,24.
  4. Сложить полученные результаты. 432,64+96,04+331,24+249,64+795,24=1904,8
  5. Полученный результат делиться на количество значений в ряду. 1904,8/5=380,96
  6. Корень из полученного числа и будет средним отклонением √380,96=19,51

Обязательный минимум

Под понятием абсолютного отклонения принято подразумевать отличия одного показателя от другого в числовом значении. Например, разница выручки за два дня: 15-13=2, где 2 – абсолютное отклонение. Этот способ подходит для нахождения отклонения между фактическим и планируемым результатом.

Для правильного выбора уменьшаемого и вычитаемого, необходимо четко понимать, для чего находится отклонения, например в случае с прибылью, планируемая будет уменьшаемым, а фактическая – вычитаемым. Использование абсолютного отклонения редко помогает при глубоком анализе ситуации.

Процент воспринимается лучше

Относительным отклонением считают процентное отношение одного показателя к другому. Чаще всего его рассчитывают для понимания того, как тот или иной компонент относится к целому значению ли параметру, а также для нахождения отношения между планируемым показателем и фактическим. Это помогает найти отношение затрат на транспортировку к сумме всех затрат, или объясняет, как в процентах относится полученная выручка к планируемой.

Применение относительного отклонения позволяет повысить уровень наглядности проводимого анализа, что в свою очередь дает возможность более точно вычленить и оценить произошедшие в системе изменения.

Для примера можно найти абсолютное отклонение для полученной выручки относительно планируемой: при соответствующих значениях 1600 и 2000, оно составит 2000-1600=400. Это визуально воспринимается не так серьезно, как процентное отношение (2000-1600)/1600*100%=25%. Отклонение в 25% воспринимается более серьезно.

Как это поможет в сезонной работе

Селективное отклонение призвано помочь сравнить исследуемые данные за определенные промежутки времени. Данным отрезком времени могут быть кварталы, месяцы, не редко это сравнения дней. И для большей информативности необходимо сравнивать временные отрезки не в пределах одного года, а с такими же за прошлые года. Это более точно покажет общую тенденцию изменений величин на протяжении нескольких лет и поможет четче выявить влияющие на них факторы.

Наибольшую актуальность применение селективного отклонения находит в фирмах, доход которых неравномерно распределен на протяжении года. То есть поставщики сезонных продуктов или услуг.

Как выявить тренд отклонения

Сумма, исчисляемая нарастающим итогом, называется кумулятивным отклонением. Благодаря ему производится оценка параметра, его рост или падение за заданный промежуток времени, чаще всего месяц. А также позволяет спланировать конечный результат изменений за период. Благодаря этому можно игнорировать случайные, несистематические изменения параметра, не влияющие на долгосрочную перспективу (весь период) и давать более четкую тенденцию движения параметра. Она чаще всего показывается в виде прямой на графике, последовательно отмечающем все показатели параметра, и соединяющей начальную и конечную точки ломаной линии. Ее направление вниз или вверх и будет тенденцией.

Отклонение во временном разрезе

Зачастую с его помощью происходит сравнение фактического и планируемого показателя. Является крайне важным в случае негативного отклонения планового значения от фактического. Позволяет использовать в анализе реальный результат вместо планируемого или желаемого показателей.

finrussia.ru

Как рассчитать отклонение?

Многие экономисты ломают себе голову над тем, как рассчитать стандартное отклонение и что это такое. Кроме того, им еще нужно знать, что такое абсолютное отклонение и относительное. В этой статье описаны методы расчетов этих отклонений.

Стандартное отклонение

Стандартное отклонение, как рассчитать его? Для начала нужно понять, что же такое стандартное отклонение. Это очень существенный показатель рассеяния в разделе описательной статистики. Стандартное отклонение можно рассчитать по следующему алгоритму:

  1. Сначала - вычисление среднего арифметического выборки данных.
  2. Затем нужно вычесть среднее арифметическое от каждого элемента выборки.
  3. Каждую полученную разницу следует возвести в квадрат.
  4. Сложить все квадраты разниц, полученные в пункте 3.
  5. Поделить сумму квадратов на количество элементов выборки.
  6. Теперь из этого частного нужно извлечь квадратный корень.

Результат, который вы получите, и будет являться стандартным отклонением.

Абсолютное отклонение

Как рассчитать абсолютное отклонение? Абсолютным отклонением можно назвать разницу, получаемую при вычитании одной величины из другой, этот способ является выражением сложившихся положений вещей между плановым и фактическим параметрами.

Известно, что определенную проблему обычно вызывает такой показатель, как знак абсолютного отклонения. Обычно считается, что отклонение, которое позитивно сказывается на прибыли предприятия, считается положительным, и в вычислениях его ставят со знаком «+». Что же касается банальной математики, такой подход считается не совсем корректным, а это, в свою очередь, вызывает конфликты и разногласия среди специалистов. Исходя из этого, на практике вычисления абсолютного отклонения зачастую пользуются не базовой экономической, а математической моделью. Математическая модель   заключается в том, что повышение фактического оборота в сравнении с запланированным обозначается знаком «+», а уменьшение фактических издержек в сравнении с плановыми обозначается знаком «-».

Относительное отклонение

Как рассчитать относительное отклонение? Отклонение можно рассчитывать, опираясь на отношение к другим величинам, а это значит, что данный показатель выражается в процентах. Зачастую относительные отклонения вычисляются по отношению к относительно базовому значению или параметру. К примеру, можно выразить относительное отклонение, допустим, тех же затрат на материалы, как отношение к суммарной затрате или в проценте к обороту.

В применении относительных отклонений следует учесть, что их наличие способствует повышению уровня информативности анализа, который мы проводим, а следовательно, позволяет боле

elhow.ru

Как найти относительное отклонение 🚩 Относительное отклонение формула 🚩 Управление бизнесом

Автор КакПросто!

Основным инструментом оценки деятельности любой организации является анализ различных отклонений. Расчет относительного отклонения производится для сравнения определенных показателей с основной базой. Это позволяет сравнивать явления, обладающие разной степенью несоответствия. Как найти относительное отклонение

Статьи по теме:

Инструкция

Сравните плановые и фактические значения некоторых величин, которые выступают в качестве показателей деятельности предприятия. Тем самым, вы сможете выявить различные отклонения, установить их причины, посчитать затраты на их устранение и показать экономическую целесообразность этого. За основу фактических показателей, требующих контроля, возьмите данные различного уровня учета на предприятии (финансового, управленческого и статистического). В их роли могут предстать сроки выполнения задания, качество производимой или реализованной продукции, а также параметры, выраженные в стоимостных или натуральных показателях.

Рассмотрите три главных фактора, которые оказывают влияние на эффективность деятельности предприятия одновременно: объем производства, расход средств на единицу продукции и затраты на сырье и нормы. Следствием их изменения являются отклонения от плановых показателей. Абсолютное отклонение представляет собой разницу величин и выражает истинную связь между плановыми и фактическими показателями. Исчисляется абсолютное отклонение в физических единицах (рублях, килограммах и т.п.).

Теперь рассчитайте относительное отклонение. Оно помогает наиболее информативно провести анализ и дать более ясную оценку изменениям. Относительное отклонение вычисляется как отношение абсолютного отклонения к действительному значению. Выражается величина в долях, частях или процентах. Для его нахождения разделите значение показателя конца периода на значение его начала и умножьте результат на 100. Используйте формулу для расчета: (b2-a1)/a1*100%, где a1–начальное значение, b2 –конечное значение. Для расчета относительного отклонения уровня выполнения производственного плана вы можете воспользоваться формулой: ОВвп = хф/хпл. Здесь ОВвп – относительная величина валового продукта, хф – фактическое количество произведенной продукции, хпл – количество продукции по плану.

Источники:

  • относительная величина отклонения

Совет полезен?

Распечатать

Как найти относительное отклонение

Похожие советы

www.kakprosto.ru

Что такое стандартное отклонение — использование функции СТАНДОТКЛОН для расчета стандартного отклонения в Excel

86-0-стандартное отклонение excel лого

Стандартное отклонение является одним из тех статистических терминов в корпоративном мире, которое позволяет поднять авторитет людей, сумевших удачно ввернуть его в ходе беседы или презентации, и оставляет смутное недопонимание тех, кто не знает, что это такое, но стесняется спросить. На самом деле большинство менеджеров не понимают концепцию стандартного отклонения и, если вы один из них, вам пора перестать жить во лжи. В сегодняшней статье я расскажу вам, как эта недооцененная статистическая мера позволит лучше понять данные, с которыми вы работаете.

Что измеряет стандартное отклонение?

Представьте, что вы владелец двух магазинов. И чтобы избежать потерь, важно, чтобы был четкий контроль остатков на складе. В попытке выяснить, кто из менеджеров лучше управляет запасами, вы решили проанализировать стоки последних шести недель. Средняя недельная стоимость стока обоих магазинов примерно одинакова и составляет около 32 условных единиц. На первый взгляд среднее значение стока показывает, что оба менеджера работают одинаково.

86-1-стандартное отклонение excel

Но если внимательнее изучить деятельность второго магазина, можно убедится, что хотя среднее значение корректно, вариабельность стока очень высокая (от 10 до 58 у.е.). Таким образом, можно сделать вывод, что среднее значение не всегда правильно оценивает данные. Вот где на выручку приходит стандартное отклонение.

Стандартное отклонение показывает, как распределены значения относительно среднего в нашей выборке.  Другими словами, можно понять на сколько велик разброс величины стока от недели к неделе.

В нашем примере, мы воспользовались функцией Excel СТАНДОТКЛОН, чтобы рассчитать показатель стандартного отклонения вместе со средним.

86-2-стандартное отклонение excel

В случае с первым менеджером, стандартное отклонение составило 2. Это говорит нам о том, что каждое значение в выборке в среднем откланяется на 2 от среднего значения. Хорошо ли это? Давайте рассмотрим вопрос под другим углом – стандартное отклонение равное 0, говорит нам о том, что каждое значение в выборке равно его среднему значению (в нашем случае, 32,2). Так, стандартное отклонение 2 ненамного отличается от 0, и указывает на то, что большинство значений находятся рядом со средним значением. Чем ближе стандартное отклонение к 0, тем надежнее среднее. Более того, стандартное отклонение близкое к 0, говорит о маленькой вариабельности данных. То есть, величина стока со стандартным отклонением 2, указывает на невероятную последовательность первого менеджера.

В случае со вторым магазином, стандартное отклонение составило 18,9. То есть стоимость стока в среднем отклоняется на величину 18,9 от среднего значения от недели к неделе. Сумасшедший разброс! Чем дальше стандартное отклонение от 0, тем менее точно среднее значение. В нашем случае, цифра 18,9 указывает на то, что среднему значению (32,8 у.е. в неделю) просто нельзя доверять. Оно также говорит нам о том, что еженедельная величина стока обладает большой вариабельностью.

Такова концепция стандартного отклонения в двух словах. Хотя оно не дает представление о других важных статистических измерениях (Мода, Медиана…), фактически стандартное отклонение играет решающую роль в большинстве статистических расчетов. Понимание принципов стандартного отклонения прольет свет на суть многих процессов вашей деятельности.

Как рассчитать стандартное отклонение?

Итак, теперь мы знаем, о чем говорит цифра стандартного отклонения. Давайте разберемся, как она считается.

Рассмотрим набор данных от 10 до 70 с шагом 10. Как видите, я уже рассчитал для них значение стандартного отклонения с помощью функции СТАНДОТКЛОН в ячейке h3 (оранжевым).

86-3-стандартное отклонение excel

Ниже описаны шаги, которые предпринимает Excel, чтобы прийти к цифре 21,6.

Обратите внимание, что все расчеты визуализированы, для лучшего понимания. На самом деле в Excel расчет происходит мгновенно, оставляя все шаги за кулисами.

Для начала Excel находит среднее значение выборки. В нашем случае, среднее получилось равным 40, которое на следующем шаге отнимают от каждого значения выборки. Каждую полученную разницу возводят в квадрат и суммируют. У нас получилась сумма равная 2800, которую необходимо разделить на количество элементов выборки минус 1. Так как у нас 7 элементов, получается необходимо 2800 разделить на 6. Из полученного результата находим квадратный корень, это цифра будет стандартным отклонением.

86-4-стандартное отклонение excel

Для тех, кому не совсем ясен принцип расчета стандартного отклонения с помощью визуализации, привожу математическую интерпретацию нахождения данного значения.

Стандартное отклонение формула

Функции расчета стандартного отклонения в Excel

В Excel присутствует несколько разновидностей формул стандартного отклонения. Вам достаточно набрать =СТАНДОТКЛОН и вы сами в этом убедитесь.

86-6-стандартное отклонение excel

Стоит отметить, что функции СТАНДОТКЛОН.В и СТАНДОТКЛОН.Г (первая и вторая функция в списке) дублируют функции СТАНДОТКЛОН и СТАНДОТКЛОНП (пятая и шестая функция в списке), соответственно, которые были оставлены для совместимости с более ранними версиями Excel.

Вообще разница в окончаниях .В и .Г функций указывают на принцип расчета стандартного отклонения выборки или генеральной совокупности. Разницу между двумя этими массивами я уже объяснял в предыдущей статье расчета дисперсии.

Особенностью функций СТАНДОТКЛОНА и СТАНДОТКЛОНПА (третья и четвертая функция в списке), является то, что при расчете стандартного отклонения массива в расчет принимаются логические и текстовые значения. Текстовые и истинные логические значения равняются 1, а ложные логические значения равняются 0. Мне трудно представить ситуацию, когда бы мне могли понадобится эти две функции, поэтому, думаю, что их можно игнорировать.

Вам также могут быть интересны следующие статьи

exceltip.ru

Как рассчитать относительное отклонение?

#1

Для того, чтобы высчитать относительное отклонение между двумя показателями необходимо большее разделить на меньшее. Полученное число потом необходимо умножить на сто и вычесть сто. К примеру, вчера было 5 конфет, а сегодня 4. Для того чтобы узнать относительное отклонение между этими днями необходимо ((5/4) *100) -100=25%, то есть относительное отклонение за эти два дня 25%. Теперь вы знаете, как рассчитать относительное отклонение.

#2

Абсолютное отклонение это разница между отчетным и базовым периодом и для его расчета необходимо из большего вычесть меньшое. На пример вчера было 10 мандаринов, а сегодня 7. Для расчета абсолютного отклонения необходимо 10-7=3, то есть абсолютное отклонение 3 мандарина. Теперь понятно, как рассчитать абсолютное отклонение.

#3

Для того чтобы рассчитать отклонение в процентах необходимо фактическую цифру умножить на сто и разделить плановую цифру. После чего нужно от полученной цифры отнять сто. Если число получиться отрицательное, то это значит, что на столько процентов не выполнен план, если положительно, то план перевыполнен. Вот как рассчитать отклонение в процентах.

#4

Для расчета среднего отклонения необходимо в документ Excel в один ряд разместить все данные числа, после чего выбрать статистическую функцию «ДИСПР» и нажать «ОК». Для функции должны быть указаны номера ячее таблицы, в которых находятся значения для расчета отклонения. После этого из полученного число необходимо извлечь корень квадратный. Получившееся число и является средним отклонением. Теперь понятно, как рассчитать среднее отклонение.

#5

Стандартное отклонение это старый индикатор изменчивости из описательной статистики. Оно является весьма популярным показателем рассеяния который используется в описательной статистике. И поскольку технический анализ близок к статистике, то можно использовать это значение и в техническом анализе, чтобы определить степени рассеяния значения инструмента во времени. В этой статье будет рассказано, как посчитать стандартное отклонение в экселе. В этом анализе стандартное отклонение называют индикатором волатильности, при этом он не меняет своего смысла. Для того чтобы вычислить стандартное отклонение в Excel есть функция, которая носит имя СТАНДОТКЛОН. Данная функция делится на стандартное отклонение по генеральной совокупности (СТАНДОТКЛОН. Г) и стандартное отклонение по выборке (СТАНДОТКЛОН. В) . Для подсчета стандартного отклонения необходимо выбрать нужный диапазон и нажать «ОК».

uznay-kak.ru

Среднее линейное отклонение

Мудрые математики и статистики придумали более надежный показатель, хотя и несколько другого назначения – среднее линейное отклонение. Этот показатель характеризует меру разброса значений совокупности данных вокруг их среднего значения.

Для того, чтобы показать меру разброса данных нужно вначале определиться, относительно чего этот самый разброс будет считаться - jбычно это средняя величина. Дальше нужно посчитать, насколько значения анализируемой совокупности данных находятся далеко от средней. Понятное дело, что каждому значению соответствует некоторая величина отклонения, но нас же интересует общая оценка, охватывающая всю совокупность. Поэтому рассчитывают среднее отклонение по формуле обычной средней арифметической. Но! Но для того, чтобы рассчитать среднее из отклонений, их нужно вначале сложить. И если мы сложим положительные и отрицательные числа, то они взаимоуничтожатся и их сумма будет стремиться к нулю. Чтобы этого избежать, все отклонения берутся по модулю, то есть все отрицательные числа становятся положительными. Вот теперь среднее отклонение будет показывать обобщенную меру разброса значений. В итоге, средне линейное отклонение будет рассчитываться по формуле:

где

a – среднее линейное отклонение,

x – анализируемый показатель, с черточкой сверху – среднее значение показателя,

n – количество значений в анализируемой совокупности данных,

оператор суммирования, надеюсь, никого не пугает.

Рассчитанное по указанной формуле среднее линейное отклонение отражает среднее абсолютное отклонение от средней величины по данной совокупности. 

 

На картинке красная линия - это среднее значение. Отклонения каждого наблюдения от среднего указаны маленькими стрелочками. Именно они берутся по модулю и суммируются. Потом все делится на количество значений.

Для полноты картины нужно привести еще и пример. Допустим, имеется фирма по производству черенков для лопат. Каждый черенок должен быть 1,5 метра длиной, но, что еще важней, все должны быть одинаковыми или, по крайней мере, плюс-минус 5 см. Однако нерадивые работники то 1,2 м отпилят, то 1,8 м. Дачники недовольны. Решил директор фирмы провести статистический анализ длины черенков. Отобрал 10 штук и замерял их длину, нашел среднюю и рассчитал среднее линейное отклонение. Средняя получилась как раз, что надо – 1,5 м. А вот среднее линейное отклонение вышло 0,16 м. Вот и получается, что каждый черенок длиннее или короче, чем нужно в среднем на 16 см. Есть, о чем поговорить с работниками. На самом деле я не встречал реального использования данного показателя, поэтому пример придумал сам. Тем не менее, в статистике есть такой показатель.

Дисперсия

Как и среднее линейное отклонение, дисперсия также отражает меру разброса данных вокруг средней величины.

Формула для расчета дисперсии выглядит так:

(для вариационных рядов (взвешенная дисперсия) )

(для несгруппированных данных (простая дисперсия))

 Где: σ2 – дисперсия, Xi – анализируемsq показатель (значение признака), – среднее значение показателя, fi – количество значений в анализируемой совокупности данных.

Дисперсия - это средний квадрат отклонений.

Сначала рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, умножается на частоту соответствующего значения признака, складывается и затем делится на количество значений в данной совокупности.

Однако в чистом виде, как, например, средняя арифметическая, или индекс, дисперсия не используется. Это скорее вспомогательный и промежуточный показатель, который используется для других видов статистического анализа.

Упрощенный способ расчета дисперсии

Среднеквадратическое отклонение

Чтобы использовать дисперсию дл анализа данных из нее извлекают квадратный корень. Получается так называемое среднеквадратическое отклонение.

Кстати, стандартное отклонение еще называют сигмой – от греческой буквы, которой его обозначают.

Среднеквадратическое отклонение, очевидно, также характеризует меру рассеяния данных, но теперь (в отличие от дисперсии) его можно сравнивать с исходными данными. Как правило, среднеквадратические показатели в статистике дают более точные результаты, чем линейные. Следовательно, среднеквадратическое отклонение является более точным показателем меры рассеяния данных, чем среднее линейное отклонение.

studfiles.net