2.2. Силы в механике. Практическое применение законов Ньютона. Применение второй закон ньютона


Законы Ньютона. Второй закон Ньютона. Законы Ньютона

Изучение явлений природы на основании эксперимента возможно только при условии соблюдения всех этапов: наблюдение, гипотеза, эксперимент, теория. Наблюдение позволит выявить и сопоставить факты, гипотеза дает возможность дать им подробное научное пояснение, требующее экспериментального подтверждения. Проведение наблюдения за движением тел привело к интересному выводу: изменение скорости тела возможно только под действием другого тела.

К примеру, если быстро бежать по лестнице, то на повороте просто необходимо ухватиться за перила (изменение направления движения), либо приостановиться (изменением величины скорости), чтобы не столкнуться с противоположной стеной.

Наблюдения за аналогичными явлениями привело к созданию раздела физики, изучающего причины изменения скорости тел или их деформации.

Основы динамики

Ответить на сакраментальный вопрос о том, почему физическое тело движется тем или иным образом или покоится, призвана динамика.

Рассмотрим состояние покоя. Исходя из понятия относительности движения, можно сделать вывод: нет и не может быть абсолютно неподвижных тел. Любой предмет, будучи неподвижным по отношению к одному телу отсчета, движется относительно другого. К примеру, книга, лежащая на столе, неподвижна относительно стола, но если рассмотреть ее положение по отношению к проходящему человеку, то делаем естественный вывод: книга движется.

сила законы ньютона

Поэтому законы движения тел рассматриваются в инерциальных системах отсчета. Что это такое?

Инерциальной называется система отсчета, в которой тело покоится или выполняет равномерное и прямолинейное движение при условии отсутствия воздействия на него иных предметов или объектов.

В приведенном выше примере система отсчета, связанная со столом, может быть названа инерциальной. Человек, движущийся равномерно и прямолинейно, может служить телом отсчета ИСО. Если его движение будет ускоренным, то связать с ним инерциальную СО нельзя.

По сути, такую систему можно соотнести с телами, жестко закрепленными на поверхности Земли. Однако сама планета не может служить телом отсчета для ИСО, так как равномерно вращается вокруг собственной оси. Тела на поверхности имеют центростремительное ускорение.

Что такое инерция?

Явление инерции напрямую связано с ИСО. Вспомните, что происходит, если движущийся автомобиль резко останавливается? Пассажиры подвергаются опасности, поскольку продолжают свое движение. Остановить его может кресло впереди либо ремни безопасности. Поясняют этот процесс инерцией пассажира. Так ли это?

законы ньютона

Инерция – явление, предполагающее сохранение постоянной скорости тела при отсутствии воздействия на него других тел. Пассажир находится под действием ремней или кресел. Явление инерции здесь не наблюдается.

Объяснение кроется в свойстве тела, и, согласно ему, мгновенно изменить скорость того или иного предмета невозможно. Это – инертность. К примеру, инертность ртути в термометре позволяет опустить столбик, если мы встряхнем градусник.

Мерой инертности называют массу тела. При взаимодействии скорость быстрее меняется у тел с меньшей массой. Столкновение автомобиля с бетонной стеной для последней протекает практически бесследно. Автомобиль чаще всего претерпевает необратимые изменения: меняется скорость, происходит значительная деформация. Получается, что инертность бетонной стены значительно превышает инертность автомобиля.

Возможно ли в природе встретиться с явлением инерции? Условие, при котором тело находится без взаимосвязи с другими телами – глубокий космос, в котором движется космический корабль с выключенными двигателями. Но даже в этом случае гравитационный момент присутствует.

Основные величины

Изучение динамики на экспериментальном уровне предполагает проведение опыта с измерениями физических величин. Наиболее интересны:

  • ускорение как мера быстроты изменения скорости тел; обозначают ее буквой а, измеряют в м/с2;
  • масса как мера инертности; обозначена литерой m, измеряется в кг;
  • сила как мера взаимного действия тел; обозначается чаще всего буквой F, измеряется в Н (ньютонах).

Взаимосвязь этих величин изложена в трех закономерностях, выведенных величайшим английским физиком. Законы Ньютона призваны объяснить сложности взаимодействия различных тел. А также процессы, ими управляющие. Именно понятия "ускорение", "сила", "масса" законы Ньютона связывают математическими соотношениями. Попробуем разобраться, что же это значит.

Действие только одной силы – явление исключительное. К примеру, искусственный спутник, движущийся по орбите вокруг Земли, находится под действием только силы притяжения.

Равнодействующая

Действие нескольких сил можно заменить одной силой.

Геометрическая сумма сил, воздействующих на тело, именуется равнодействующей.

Речь идет именно о геометрической сумме, поскольку сила – векторная величина, которая зависит не только от точки приложения, но и от направления действия.

К примеру, если необходимо передвинуть достаточно массивный шкаф, то можно пригласить друзей. Совместными усилиями достигается желаемый результат. Но можно пригласить только одного, очень сильного человека. Его усилие равно действию всех друзей. Сила, приложенная богатырем, может быть названа равнодействующей.

Законы движения Ньютона формулируются на основании понятия «равнодействующая».

Закон инерции

Начинают изучать законы Ньютона с наиболее часто встречающегося явления. Первый закон обычно называют законом инерции, поскольку он устанавливает причины равномерного прямолинейного движения или состояния покоя тел.

Тело перемещается равномерно и прямолинейно или покоится, если на него не осуществляют действия силы, либо это действие скомпенсировано.

Можно утверждать, что равнодействующая в этом случае равна нулю. В таком состоянии находится, к примеру, движущийся с постоянной скоростью автомобиль на прямолинейном участке дороги. Действие силы притяжения скомпенсировано силой реакции опоры, а сила тяги двигателя по модулю равна силе сопротивления движению.

Люстра на потолке покоится, так как сила тяжести скомпенсирована силой натяжения ее креплений.

Скомпенсированными могут быть только те силы, которые приложены к одному телу.

Второй закон Ньютона

Идем далее. Причины, вызывающие изменение скорости тел, рассматривает второй закон Ньютона. О чем он говорит?

Равнодействующая сил, воздействующих на тело, определяется как произведение массы тела на приобретаемое под действием сил ускорение.

2 закон ньютона формула

2 закон Ньютона (формула: F=ma), к сожалению, не устанавливает причинно-следственных связей между основными понятиями кинематики и динамики. Он не может с точностью указать, что является причиной появления ускорения тел.

Сформулируем иначе: ускорение, получаемое телом, прямо пропорционально равнодействующей сил и обратно пропорционально массе тела.

Так, можно установить, что изменение скорости происходит только в зависимости от силы, приложенной к нему, и массы тела.

2 закон Ньютона, формула которого может быть и такой: a = F/m, в векторном виде считают основополагающим, поскольку он дает возможность установить связь между разделами физики. Здесь, a – вектор ускорения тела, F – равнодействующая сил, m - масса тела.

Ускоренное движение автомобиля возможно, если сила тяги двигателей превышает силу сопротивления движению. С увеличением силы тяги возрастает и ускорение. Грузовые автомобили снабжаются двигателями большой мощности, ведь их масса значительно превышает массу легкового авто.

Болиды, созданные для скоростных гонок, облегчаются таким образом, что на них закрепляется минимум необходимых деталей, а мощность двигателей увеличивается до возможных пределов. Одной из важнейших характеристик спортивных авто является время разгона до 100 км/ч. Чем меньшее этот интервал времени, тем лучше скоростные свойства болида.

Закон взаимодействия

Законы Ньютона, основанные на силах природы, утверждают, что любое взаимодействие сопровождается появлением пары сил. Если шар висит на нити, то испытывает ее действие. При этом нить также растягивается под действием шара.

Завершает законы Ньютона формулировка третьей закономерности. Вкратце это звучит так: действие равно противодействию. Что это значит?

физика законы ньютона

Силы, с которыми тела воздействуют друг на друга, равны по величине, противоположны по направлению и направлены вдоль линии, соединяющей центры тел. Интересно, что скомпенсированными их назвать нельзя, ведь действуют они на разные тела.

Применение законов

Знаменитая задача «Конь и телега» может поставить в тупик. Конь, запряженный в упомянутую повозку, сдвигает ее с места. В соответствии с третьим законом Ньютона, эти два объекта действуют друг на друга с равными по модулю силами, но на практике лошадь может сдвинуть телегу, что не укладывается в основы закономерности.

Решение найдется, если учесть, что эта система тел не замкнута. Дорога оказывает свое действие на оба тела. Сила трения покоя, действующая на копыта коня, превышает по значению силу трения качения колес телеги. Ведь момент движения начинается с попытки сдвинуть повозку. Если положение изменится, то конь ни при каких условиях не сдвинет её с места. Его копыта будут проскальзывать по дороге, и движения не будет.

В детстве, катая друг друга на санках, каждый мог столкнуться с таким примером. Если на санки сядут два-три ребенка, то усилий одного явно недостаточно, чтобы сдвинуть их с места.

Падение тел на поверхность земли, объясняемое Аристотелем («Каждое тело знает свое место») можно опровергнуть на основании вышеизложенного. Предмет движется к земле под действием такой же силы, что и Земля к нему. Сравнив их параметры (масса Земли намного больше массы тела), в соответствии со вторым законом Ньютона, утверждаем, что ускорение предмета во столько же раз больше ускорения Земли. Мы наблюдаем именно изменение скорости тела, Земля не смещается с орбиты.

Границы применимости

Современная физика законы Ньютона не отрицает, а лишь устанавливает границы их применимости. До начала XX века физики не сомневались в том, что эти законы объясняют все явления природы.

1 2 3 закон ньютона

1, 2, 3 закон Ньютона полностью выявляет причины поведения макроскопических тел. Движение объектов с незначительными скоростями полностью описывается этими постулатами.

Попытка пояснить на их основании движение тел со скоростями, близкими к скорости света, обречена на провал. Полное изменение свойств пространства и времени при этих скоростях не позволяет использовать динамику Ньютона. Кроме того, законы меняют свой вид в неинерциальных СО. Для их применения вводится понятие силы инерции.

Пояснить движение астрономических тел, правила их расположения и взаимодействия могут законы Ньютона. Закон всемирного тяготения вводится с этой целью. Увидеть же результат притяжения малых тел невозможно, ведь сила мизерна.

Взаимное притяжение

законы движения ньютона

Известна легенда, согласно которой господина Ньютона, сидевшего в саду и наблюдавшего падение яблок, посетила гениальная идея: объяснить движение предметов вблизи поверхности Земли и движение космических тел на основании взаимного притяжения. Это не так далеко от истины. Наблюдения и точный расчет касались не только падения яблок, но и перемещения Луны. Закономерности этого движения приводят к выводам, что сила притяжения возрастает с увеличением масс взаимодействующих тел и уменьшается с увеличением расстояния между ними.

Опираясь на второй и третий законы Ньютона, закон всемирного тяготения формулируют следующим образом: все тела во вселенной притягиваются друг к другу с силой, направленной вдоль линии, соединяющей центры тел, пропорциональной массам тел и обратно пропорциональной квадрату расстояния между центрами тел.

Математическая запись: F = GMm/r2, где F – сила притяжения, M, m – массы взаимодействующих тел, r – расстояние между ними. Коэффициент пропорциональности (G = 6.62 х 10-11 Нм2/кг2) получил название гравитационной постоянной.

Физический смысл: эта постоянная равна силе притяжения между двумя телами массами по 1 кг на расстоянии 1 м. Понятно, что для тел небольших масс сила столь незначительна, что ею можно пренебречь. Для планет, звезд, галактик сила притяжения настолько огромна, что полностью определяет их движение.

законы ньютона

Именно закон притяжения Ньютона утверждает, что для запуска ракет необходимо топливо, способное создать такую реактивную тягу, чтобы преодолеть влияние Земли. Скорость, необходимая для этого – первая космическая скорость, равная 8 км/с.

Современная технология изготовления ракет позволяет запускать беспилотные станции как искусственные спутники Солнца к другим планетам, чтобы их исследовать. Скорость, развиваемая таким аппаратом, – вторая космическая скорость, равная 11 км/с.

Алгоритм применения законов

Решение задач динамики подчиняется определенной последовательности действий:

  • Провести анализ задачи, выявить данные, вид движения.
  • Выполнить рисунок с указанием всех сил, действующих на тело, и направления ускорения (при его наличии). Выбрать систему координат.
  • Записать первый или второй законы, в зависимости от наличия ускорения тела, в векторной форме. Учесть все силы (равнодействующая сила, законы Ньютона: первый, если скорость тела не меняется, второй, если есть ускорение).
  • Уравнение переписать в проекциях на выбранные оси координат.
  • Если полученной системы уравнений недостаточно, то записать иные: определения сил, уравнения кинематики и т. п.
  • Решить систему уравнений относительно искомой величины.
  • Выполнить проверку размерностей, чтобы определиться с правильностью полученной формулы.
  • Вычислить.

Обычно этих действий вполне достаточно для решения любой стандартной задачи.

fb.ru

применение законов Ньютона в работе

Экология жизни. Бизнес: В 1687 году Исаак Ньютон опубликовал свою революционную книгу «Математические принципы естественной философии», в которой изложил три закона динамики. Но большинство людей не догадывается, что три закона динамики Ньютона можно по аналогии использовать и для повышения продуктивности, упрощения рабочего процесса и улучшения своей жизни.

В 1687 году Исаак Ньютон опубликовал свою революционную книгу «Математические принципы естественной философии», в которой изложил три закона динамики. Таким образом, Ньютон заложил основы классической механики и изменил взгляды человечества на физику и науку в целом.

Но большинство людей не догадывается, что три закона динамики Ньютона можно по аналогии использовать и для повышения продуктивности, упрощения рабочего процесса и улучшения своей жизни.

Позвольте мне такую аналогию назвать законами продуктивности Ньютона.

Первый закон продуктивности Ньютона

Первый закон динамики: Тело остается в состоянии покоя или продолжает движение с постоянной скоростью, если на него не действует внешняя сила (т.е. движущееся тело стремится продолжать движение, а покоящееся — оставаться в состоянии покоя).

Инертность — фундаментальный закон вселенной. Первый закон Ньютона применим и к продуктивности. Тело в состоянии покоя стремится оставаться в покое.

Хорошая новость? Закон работает и по-другому. Движущееся тело стремится продолжать движение. В отношении продуктивности это означает только одно: Самое важное — найти способ начать. Начав, продолжать движение гораздо легче.

Итак, какой же наилучший способ начать, когда находишься во власти инертности?

По своему опыту могу сказать, что проверенным методом начать работу является правило двух минут.

Вот как звучит правило двух минут в применении к продуктивности: Чтобы преодолеть инертность, найдите способ приступить к выполнению задачи в течение менее двух минут.

Обратите внимание, что речь не идет о завершении работы. Фактически, не нужно даже непосредственно работать. Но благодаря первому закону Ньютона, вы часто будете замечать, что, начав эту небольшую часть задания в течение двух минут, продолжать работать будет гораздо легче.

Приведу несколько примеров…

  • Возможно, прямо сейчас вам не хочется отправляться на пробежку. Но если вы обуете кроссовки и наполните водой бутылку, этого небольшого стартового действия будет достаточно, чтобы заставить вас выйти из дома.

  • Возможно, прямо сейчас вы смотрите на пустой экран и не можете заставить себя начать писать отчет. Но если в течение двух минут вы напишете какие-то случайные предложения, то может оказаться, что необходимые фразы начнут сами рождаться под вашими пальцами.

  • Возможно, прямо сейчас вам нужно выполнить творческое задание, а вы не можете заставить себя хоть что-то нарисовать. Но если вы начертите на листе бумаги случайную линию, а затем превратите ее в собаку, то сможете ощутить, как начинается прилив творческих сил.

Мотивация часто приходит после старта. Найдите способ начать с малого. Движущееся тело стремится продолжать движение.+

 

Второй закон продуктивности Ньютона

Второй закон динамики: F=ma. Векторная сумма сил, действующих на тело, равна произведению массы этого тела и вектора ускорения этого тела (т.е. сила равна произведению массы и ускорения).

Давайте рассмотрим составляющие этого уравнения и то, как оно может быть применено к продуктивности.

В данном уравнении надо обратить внимание на один важный момент. Сила F — векторная величина. Вектор характеризуется величиной (сколько работы вы выполняете) и направлением (куда направлена эта работа). Другими словами, если вы хотите придать телу ускорение в определенном направлении, то имеет значение, как величина прилагаемого усилия, так и направление этого усилия.

Знаете что? В жизни все происходит точно так же.

Если вы хотите быть продуктивны, это зависит не только от того, насколько напряженно вы трудитесь (величина), но также от того, куда вы прилагаете усилия (направление). Это справедливо как для крупных, значимых дел нашей жизни, так и для небольших повседневных задач.

Например, одни и те же способности можно приложить в различных направлениях и получить абсолютно разные результаты.

Проще говоря, у вас есть только определенное количество сил, которое вы можете вложить в вашу работу, и направление приложения сил так же важно, как и то, насколько напряженно вы трудитесь.

 

Третий закон продуктивности Ньютона

Третий закон динамики: Если одно тело воздействует на второе, то второе тело тоже воздействует на первое с силой, равной по величине, но противоположной по направлению (т.е. силы равны и противоположны по направлению).

У каждого из нас есть средняя скорость, с которой мы работаем в повседневной жизни. Наш обычный уровень продуктивности и эффективности обычно является балансом производительных и непроизводительных сил, согласно формуле Ньютона — равных по величине и противоположных по направлению.

В нашей жизни есть производительные усилия — концентрация, позитив и мотивация. Есть также усилия непроизводительные — стресс, недосыпание и попытки заниматься одновременно слишком многими делами.

Если мы хотим стать более эффективными и продуктивным, у нас есть два варианта.

Первый: добавить производительных усилий. Это вариант «продавливания». Мы пересиливаем себя, выпиваем дополнительную чашку кофе и работаем еще напряженней. Именно для этого люди принимают препараты, помогающие им сконцентрироваться, или смотрят мотивирующие видео, чтобы «накачать» себя. Все это — попытки повысить свои производительные силы и превозмочь непроизводительные.

Очевидно, что делать это можно лишь пока ты не выгоришь до конца, но на коротком отрезке времени стратегия «продавливания» может дать хороший результат.

Второй вариант: устранить силы противодействия. Упростите себе жизнь, научитесь говорить «нет», смените обстановку, сократите количество взятых на себя обязанностей или каким-либо другим способом устраните силы, которые вас сдерживают.

Если вы уменьшаете непроизводительные силы в своей жизни, ваша продуктивность возрастает естественным образом. Это как если бы вы чудесным образом избавились от руки, которая вас тянет назад. (Как я люблю говорить: если бы вы устранили все факторы, мешающие вам стать продуктивным, вам не потребовались бы советы по повышению продуктивности.)

Большинство людей старается «продавить» и силой проложить себе путь через препятствия. Недостаток этой стратегии заключается в том, что по-прежнему приходится иметь дело с другими силами. Я считаю, что гораздо меньше стресса предполагает вариант, при котором мы устраняем противодействующие силы и даем возможность нашей продуктивности расти естественным образом.

 

Это Вам будет интересно:

17 вопросов на собеседовании, созданных для того, чтобы вас запутать

Успех зависит от того, сколько времени вы НЕ работаете

 

Законы продуктивности Ньютона

Законы динамики Ньютона, в значительной степени, проливают свет на то, как быть продуктивным.

1. Движущееся тело стремится продолжать движение. Найдите способ приступить к делу в течение не более двух минут.

2. Вопрос не только в том, чтобы напряженно работать, но также в том, чтобы работать над правильными вещами. Ваши силы ограниченны, направление их приложения также важно.

3. Продуктивность является балансом противоположных сил. Если вы хотите быть более продуктивным, вы можете либо «продавить» препятствия, либо устранить силы противодействия. Второй вариант менее стрессовый.опубликовано econet.ru 

 

Перевод: Вячеслав Давиденко

 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

применение законов Ньютона в работе

25.03.2015

В 1687 году Исаак Ньютон опубликовал свою революционную книгу «Математические принципы естественной философии», в которой изложил три закона динамики. Таким образом, Ньютон заложил основы классической механики и изменил взгляды человечества на физику и науку в целом.

Но большинство людей не догадывается, что три закона динамики Ньютона можно по аналогии использовать и для повышения продуктивности, упрощения рабочего процесса и улучшения своей жизни.

Позвольте мне такую аналогию назвать законами продуктивности Ньютона.

Первый закон продуктивности Ньютона

Первый закон динамики: Тело остается в состоянии покоя или продолжает движение с постоянной скоростью, если на него не действует внешняя сила (т.е. движущееся тело стремится продолжать движение, а покоящееся — оставаться в состоянии покоя).

Инертность — фундаментальный закон вселенной. Первый закон Ньютона применим и к продуктивности. Тело в состоянии покоя стремится оставаться в покое.

Хорошая новость? Закон работает и по-другому. Движущееся тело стремится продолжать движение. В отношении продуктивности это означает только одно: Самое важное — найти способ начать. Начав, продолжать движение гораздо легче.

Итак, какой же наилучший способ начать, когда находишься во власти инертности?

По своему опыту могу сказать, что проверенным методом начать работу является правило двух минут.

Вот как звучит правило двух минут в применении к продуктивности: Чтобы преодолеть инертность, найдите способ приступить к выполнению задачи в течение менее двух минут.

Обратите внимание, что речь не идет о завершении работы. Фактически, не нужно даже непосредственно работать. Но благодаря первому закону Ньютона, вы часто будете замечать, что, начав эту небольшую часть задания в течение двух минут, продолжать работать будет гораздо легче.

Приведу несколько примеров…

  • Возможно, прямо сейчас вам не хочется отправляться на пробежку. Но если вы обуете кроссовки и наполните водой бутылку, этого небольшого стартового действия будет достаточно, чтобы заставить вас выйти из дома.
  • Возможно, прямо сейчас вы смотрите на пустой экран и не можете заставить себя начать писать отчет. Но если в течение двух минут вы напишете какие-то случайные предложения, то может оказаться, что необходимые фразы начнут сами рождаться под вашими пальцами.
  • Возможно, прямо сейчас вам нужно выполнить творческое задание, а вы не можете заставить себя хоть что-то нарисовать. Но если вы начертите на листе бумаги случайную линию, а затем превратите ее в собаку, то сможете ощутить, как начинается прилив творческих сил.

Мотивация часто приходит после старта. Найдите способ начать с малого. Движущееся тело стремится продолжать движение.

Второй закон продуктивности Ньютона

Второй закон динамики: F=ma. Векторная сумма сил, действующих на тело, равна произведению массы этого тела и вектора ускорения этого тела (т.е. сила равна произведению массы и ускорения).

Давайте рассмотрим составляющие этого уравнения и то, как оно может быть применено к продуктивности.

В данном уравнении надо обратить внимание на один важный момент. Сила F — векторная величина. Вектор характеризуется величиной (сколько работы вы выполняете) и направлением (куда направлена эта работа). Другими словами, если вы хотите придать телу ускорение в определенном направлении, то имеет значение, как величина прилагаемого усилия, так и направление этого усилия.

Знаете что? В жизни все происходит точно так же.

Если вы хотите быть продуктивны, это зависит не только от того, насколько напряженно вы трудитесь (величина), но также от того, куда вы прилагаете усилия (направление). Это справедливо как для крупных, значимых дел нашей жизни, так и для небольших повседневных задач.

Например, одни и те же способности можно приложить в различных направлениях и получить абсолютно разные результаты.

Проще говоря, у вас есть только определенное количество сил, которое вы можете вложить в вашу работу, и направление приложения сил так же важно, как и то, насколько напряженно вы трудитесь.

Третий закон продуктивности Ньютона

Третий закон динамики: Если одно тело воздействует на второе, то второе тело тоже воздействует на первое с силой, равной по величине, но противоположной по направлению (т.е. силы равны и противоположны по направлению).

У каждого из нас есть средняя скорость, с которой мы работаем в повседневной жизни. Наш обычный уровень продуктивности и эффективности обычно является балансом производительных и непроизводительных сил, согласно формуле Ньютона — равных по величине и противоположных по направлению.

В нашей жизни есть производительные усилия — концентрация, позитив и мотивация. Есть также усилия непроизводительные — стресс, недосыпание и попытки заниматься одновременно слишком многими делами.

Если мы хотим стать более эффективными и продуктивным, у нас есть два варианта.

Первый: добавить производительных усилий. Это вариант «продавливания». Мы пересиливаем себя, выпиваем дополнительную чашку кофе и работаем еще напряженней. Именно для этого люди принимают препараты, помогающие им сконцентрироваться, или смотрят мотивирующие видео, чтобы «накачать» себя. Все это — попытки повысить свои производительные силы и превозмочь непроизводительные.

Очевидно, что делать это можно лишь пока ты не выгоришь до конца, но на коротком отрезке времени стратегия «продавливания» может дать хороший результат.

Второй вариант: устранить силы противодействия. Упростите себе жизнь, научитесь говорить «нет», смените обстановку, сократите количество взятых на себя обязанностей или каким-либо другим способом устраните силы, которые вас сдерживают.

Если вы уменьшаете непроизводительные силы в своей жизни, ваша продуктивность возрастает естественным образом. Это как если бы вы чудесным образом избавились от руки, которая вас тянет назад. (Как я люблю говорить: если бы вы устранили все факторы, мешающие вам стать продуктивным, вам не потребовались бы советы по повышению продуктивности.)

Большинство людей старается «продавить» и силой проложить себе путь через препятствия. Недостаток этой стратегии заключается в том, что по-прежнему приходится иметь дело с другими силами. Я считаю, что гораздо меньше стресса предполагает вариант, при котором мы устраняем противодействующие силы и даем возможность нашей продуктивности расти естественным образом.

Законы продуктивности Ньютона

Законы динамики Ньютона, в значительной степени, проливают свет на то, как быть продуктивным.

  1. Движущееся тело стремится продолжать движение. Найдите способ приступить к делу в течение не более двух минут.
  2. Вопрос не только в том, чтобы напряженно работать, но также в том, чтобы работать над правильными вещами. Ваши силы ограниченны, направление их приложения также важно.
  3. Продуктивность является балансом противоположных сил. Если вы хотите быть более продуктивным, вы можете либо «продавить» препятствия, либо устранить силы противодействия. Второй вариант менее стрессовый.

Автор перевода — Давиденко Вячеслав, основатель компании MBA Consult

« Вернуться назад

Тэги: личная продуктивность, полезные советы, управление временем, тайм-менеджмент

blog.mbaconsult.ru

2.2. Силы в механике. Практическое применение законов Ньютона

Математическая запись второго закона динамики позволяет определить величину движущей силы, массы и ускорения не только для текущего момента времени, но и для будущего или предыдущего. В ней говорится о силе как о некоторой мере взаимодействия тел, не вдаваясь в её происхождение. Рассмотрим некоторые конкретные разновидности сил, широко представленные в природе и технике и играющие важную роль в механических процессах.

Под действием силы притяжения к Земле все тела падают с одинаковым, относительно поверхности Земли, ускорением g. Это означает, что на всякое тело массыmвблизи Земли действует сила тяжести. Если тело покоится относительно поверхности Земли, сила тяжести (mg) уравновешивается силой реакцииподвеса или опоры, и эти силы удерживают тело от падения. По третьему закону Ньютона тело в этом случае действует на подвес или опору с силой. Сила, с которой тело действует на подвес или опору, называется весом тела. Очевидно, эта сила равна силе тяжести лишь в том случае, если тело и опора (подвес) не участвуют в ускоренном движении (например, лифт). В противном случае. Знак «» соответствуетас – ускорению системы, направленному вверх, знак «–»– направлениюас вниз (отобразите это на рисунке и с уравнениями).

Закон взаимного притяжения тел (Земля-тело, и не только эта пара) был установлен Ньютоном. Аналитическая запись силы взаимного притяжения (закона всемирного тяготения) имеет вид: , гдеG – постоянная всемирного тяготения, равная 6,6710–11 м3/кгс2; m1 и m2 – массы взаимодействующих тел; R – расстояние между ними.

Масса, характеризующая инертные свойства тела, и масса тела, характеризующая его гравитационные свойства, тождественны, что доказано многочисленными опытами. Тождественность инертной и гравитационной масс положена Эйнштейном в основу общей теории относительности.

Весьма распространённым взаимодействием тел является трение. Сила, препятствующая скольжению соприкасающихся тел друг относительно друга, называетсясилой трения. Она направлена по касательной к поверхности соприкосновения тел противоположно скорости скольжения движущегося тела (отобразили на рисунке?). Естественно ожидать, трение существует и в случае неподвижных относительно друг друга тел –трение покоя. Максимальная сила трения покоя всегда несколько больше силы трения скольжения (вспомните свои ощущения, когда в детстве возили саночки). Таким образом, равномерное прямолинейное движение тела возможно только тогда, когда сила трения скольжения уравновешена движущей, внешней силой.

Трение обусловлено шероховатостью соприкасающихся поверхностей – взаимным зацеплением выступов на них. При достаточно гладких поверхностях главной причиной трения становятся силы межатомного взаимодействия трущихся поверхностей. В механике такого рода силы принято отображать через макропараметры. Для силы трения таким макропараметром является коэффициент трения . Величина сила трения скольжения не зависит от площади соприкосновения трущихся тел и определяется лишь величиной силы нормального давления ,прижимающей трущиеся поверхности друг к другу: (рис. 2.1.). Сила давления не всегда определяется силой тяжести. На рис. 2.1. она равна алгебраической сумме сил – силы тяжести mg и ,являющейся вертикальной составляющей силы тяги ;.

В отличие от сухого, вязкое трение характерно тем, что сила вязкого трения обращается в нуль одновременно со скоростью. Поэтому даже малая по величине внешняя сила может сообщить относительную скорость слоям вязкой жидкости. При сравнительно небольших скоростях сила вязкого трения может быть записана в виде:, где–коэффициент, зависящий от формы и размеров тела и вязких свойств среды,– скорость движущегося тела в среде.

Ещё одной силой в механике, возникающей при непосредственном контакте тел, является сила упругости. Здесь результатом взаимодействия является деформация тела; изменение его размеров или формы. Каждое из этих проявлений силы может быть использовано для её измерения.

Деформация тела является упругой, если после снятия нагрузки полностью исчезает. Характер деформации зависит как от величины и длительности действия нагрузки, так и от материала, из которого изготовлено тело. Поэтому силовые (несущие) конструкции изготавливают так, чтобы они работали в области упругих деформаций.

Практика подсказывает, чем большую деформацию мы желаем создать, тем большее усилие нужно приложить к деформируемому телу. Вспомнили ощущения, когда отрывали нить для того, чтобы заштопать дырку; или отломить веточку от куста, чтобы выкопать червяка для рыбалки. Следовательно, абсолютная величина упругой деформации пропорциональна приложенной силе; это и составляет суть содержаниязакона Гука:. ЗдесьF– приложенная сила,– первоначальная длина тела,– длина деформированного тела,k– коэффициент жёсткости,– величина упругой деформации; как правило, предельное относительное удлинение упругого характера не превосходит 0,001 межатомных расстояний.

Коэффициент жёсткости k, как и коэффициент трения , является в механике макропараметром, отображающим межатомные взаимодействия при деформации (упругой). Действительно, при сжатии тела межатомные расстояния уменьшаются, при растяжении возрастают, соответственно, возникают силы электрического отталкивания или притяжения. Указанная выше величина предельной относительной упругой деформации позволяет ввести коэффициент жёсткости, который неплохо усредняет результат действия электрических сил и «сводит» упругую деформацию к линейной зависимости. При возникновении сомнения есть реальный путь поверки. Рассмотрите взаимодействие двух ионов в устойчивом и деформированном состоянии. Затем найдите разность сил. Учтите при преобразованиях, что имеете дело с малыми величинами; должна получиться линейная зависимость от деформации.

В продолжение сказанному можно ввести и характеристику упругих свойств твёрдого тела, например, стержня. Будем рассуждать так. Пусть к нижнему концу стержня длиной и площадью поперечного сечения S приложена деформирующая сила (рис. 2.2.). Стержень удлиняется (),и в нём возникает сила упругости F  –.Опыт показывает, удлинение пропорционально деформирующей силе, первоначальной длине стержня ,обратно пропорционально площади его поперечного сечения S и зависит от упругих свойств вещества E, из которого сделан стержень: .Здесь величина Е, называемая модулем Юнга, зависит от внутренней структуры вещества стержня. Если относительное удлинение обозначить через , а отношение F/S  , сила, приходящаяся на единицу площади и называемая нормальным механическим напряжением, то .Таким образом, относительное удлинение стержня тем меньше, чем больше модуль Юнга вещества Е.

Приведём несколько примеров, иллюстрирующих физическое содержание основного закона механики: геометрическая сумма сил, действующих на тело, равна произведению массы тела на ускорение и направлена вдоль ускорения. С помощью основного закона динамики можно определить силы, действующие на тело, или по заданным силам – уравнение движения тела. Рассмотрим силы, которые действуют на груз, лежащий на полу лифта, движущегося с ускорением вертикально вверх (рис. 2.3.). На груз действует сила со стороны Земли (mg) и со стороны дна лифта сила реакции дна лифта . Поскольку груз движется вверх, естественно, .Учитывая, что равнодействующая сила совпадает с направлением ускорения, то – ma. Так как  mg, то  mg  ma. Взаимодействие груза с лифтом есть не что иное как сила, с которой груз давит на дно лифта .Следовательно, сила является весом тела. Аналитическая запись примет вид:  P   mg  ma; (см. рис. 2.3). Отсюда следует, что вес тела, сила взаимодействия груза с подставкой, «чувствительна» к направлению движения и может быть равна силе тяжести, больше силы тяжести или меньше её. Из последнего равенства следует ещё один вывод. Если ускорения а и g равны по величине, но противоположны по направлению, вес тела равен нулю, т.е. состояние невесомости. Сейчас можно вернуться ко второму абзацу данного параграфа и решить обозначенную в нём задачу. Попробуйте.

Рассмотрим движение автомобиля массы m, поднимающегося в гору с ускорением a. Уклон горы равен 1 м на каждые 25 м пути, коэффициент сопротивления движению   0,1 от силы нормального давления. Требуется найти силу тяги ,развиваемую автомобилем. Поскольку автомобиль взаимодействует с Землёй, на него действует сила тяжести mg (рис.2.4). Составляющая силы тяжести является силой нормального давления автомобиля на наклонную плоскость P; из прямоугольного треугольника сил  P   mgcos и определяют силу сопротивления движению  P. В то же время составляющая силы тяжести на направление движения препятствует поступательному движению автомобиля вверх и из треугольника сил  mgsin. По второму закону Ньютона .В скалярной форме, принимая за положительное направление оси отсчёта направление движения автомобиля (направление ) (рис.2.4), уравнение динамики примет вид: .Подставляя заданные величины, после несложных преобразований можно выразить силу ;разумеется, в общем виде. Проделали? Численный результат зависит от заданных величин. Задачу можно переформулировать, например, задаться вопросом: «каким должен быть минимальный коэффициент трения (колесо–Земля), чтобы автомобиль смог подняться в гору?». При движении автомобиль «отталкивается» от Земли, если возникает достаточная сила трения. Заметим, здесь не отображена сила реакции N (отобразите).

Предлагается рассмотреть ещё одну задачу. Небольшое тело mначинает скользить из точкиАпо наклонной плоскости, основание которойb2,1 м (рис. 2.5.). Коэффициент трения между телом и наклонной плоскостью0,14. При каком значении углавремя соскальзывания будет наименьшим? Чему оно равно? Интерес к задаче, во-первых, в том, что её решение в плане динамики перекликается с предыдущей задачей, а потому вполне по силам читателю. На листке нарисуйте силу тяжести, действующую на тело m; разложите её на составляющие. Появится сила, составляющая силы тяжести на направление наклонной плоскости, обеспечивающая скольжение тела; сила, препятствующая движению тела вниз. Не забудьте, сила трения обеспечивается составляющей силы тяжести, перпендикулярной к наклонной плоскости. Записав второй закон динамики в скалярной форме, можно найти ускорение скольжения телаmпо наклонной плоскости. Во-вторых, задача поднимает вопросы из кинематики. При составлении уравнений кинематики придётся вводить величины, которые не заданы, например, путь скольжения. Потребуется ускорение, которое обусловлено силами,, времяt; основание наклонной плоскостиb задано. Далее задача переводится в исследовательскую плоскость математики, выполнение математических действий, подготавливающих уравнение движения к поиску условия минимума для времениt. Очевидно, потребуется найти аналитическую зависимость времени соскальзывания тела с наклонной плоскости через заданные величины. Сформулированный в условии задачи вопрос предполагает, что время должно быть выражено через заданные величины, и, в частности, через:tf(). Осталось определить, какую математическую операцию необходимо выполнить, чтобы найти условие минимума. В математике неизвестная величина, как правило, обозначается символомх, в условии предложенной задачи, с точки зрения математиких. Возможно, эта запись облегчит выполнение математической операции при нахождении минимума времени соскальзывания. Удачи.

Завершая экскурс в раздел динамики «Силы в механике. Практическое применение закон Ньютона» перечислим его ключевые слова: сила тяжести, вес тела, сила реакции, сила упругости, сила трения, макропараметр силы упругости и трения.

studfiles.net

Применение законов Ньютона в жизни

Цель

Изучение законов Ньютона

Задача

Изучить  законы Ньютона и выяснить, могут ли они нам пригодиться в жизни

Гипотеза

 Хорошо изучив законы Ньютона, мы легко сможем объяснить:

  • почему при разгоне мы не останавливаемся сразу, а только через некоторое расстояние;
  • почему  более тяжелые  машины едут быстрее?

Этапы исследования

  •  Обратиться к материалам в библиотеке или к материалам Интернета для поиска нужной информации;
  • Собрать весь подходящий материал и проанализировать его;
  • Провести опыты или эксперименты;
  • Представить результаты опытов и экспериментов, сделать выводы на их основе;

Первый закон Ньютона. Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения.

Свойство тел сохранять свою скорость при отсутствии действия на него других тел называется инерцией. Масса тела – количественная мера его инертности. В СИ она измеряется в килограммах.

Системы отсчета, в которых выполняется первый закон Ньютона, называются инерциальными. Системы отсчета, движущиеся относительно инерциальных с ускорением, называются неинерциальными.

Сила – количественная мера взаимодействия тел. Сила – векторная величина и измеряется в ньютонах (Н). Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется равнодействующей этих сил.

Второй закон Ньютона. Ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

 F=ma

Если два тела взаимодействуют друг с другом, то ускорения этих тел обратно пропорциональны их массам.

Рис. 1. Взаимодействие двух тел

 

 

Третий Закон Ньютона.При любом взаимодействии двух тел возникают силы, действующие на оба тела. Опыт показывает, что силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению:

F1=-F2

Эта формула выражает третий закон Ньютона. Следует помнить, что силы  и  приложены к разным телам и поэтому не могут уравновешивать друг друга.

Результат

  • Изучив   определение инерции, мы узнали,  что тело не может сразу остановиться само, без воздействия на него другого тела;
  • Изучив второй закон Ньютона, мы узнали, что скорость машины будет зависеть от её массы;
  • Мы ориентируемся в   научных понятиях и информации естественнонаучного содержания;
  • Мы овладели некоторыми элементами исследовательского метода;
  • Мы можем использовать естественнонаучные знания на практике;

Вывод

Наша гипотеза подтвердилась . Исследуя данную тему, мы изучили  три закона Ньютона,  которые  окружают нас в жизни, и узнали, что  они очень полезны и могут нам помочь в некоторых ситуациях.

Используемые материалы:

1.  ВидеоЗаконы Ньютона 

2.Первый закон Ньютона. Инерциальные системы

3.Третий закон Ньютона

Используемые ресурсы:

1. Онлайн сервис для обрезки видео 

2. глоссарий

3. Youtube

4. Графический редактор

iteach.vspu.ru

Второй закон Ньютона | Физика

В первом законе Ньютона рассматривалось тело, находящееся бесконечно далеко от всех остальных тел Вселенной. Такое тело не может изменить свою скорость относительно Солнца и удаленных звезд и потому сохраняет относительно них либо свое состояние покоя, либо состояние равномерного и прямолинейного движения.

Мы будем связывать систему отсчета с Землей. Рассматривая движение тел вблизи ее поверхности, можно заметить, что скорость тел относительно Земли изменяется лишь тогда, когда на них начинают действовать другие тела. Проиллюстрируем это несколькими примерами.

Толкая вагонетку, ее приводят в движение (рис. 10). В этом случае скорость вагонетки изменяется под действием руки человека.

Опустим на воду пробку, на которой лежит железная скрепка. Магнит, притягивая скрепку, приводит ее и пробку в движение (рис. 11). В этом случае магнит — то тело, которое изменяет скорость скрепки и пробки.

При действии руки на шар витки пружины начинают двигаться, и пружина сжимается (рис. 12, а). Отпустив ее, мы увидим, как пружина, распрямляясь, приводит в движение шар (рис. 12, б). Сначала действующим телом здесь была рука человека. Затем действующим на шар телом стала пружина.Действие силыДействие силыВо всех приведенных примерах причиной изменения скорости тела (и, следовательно, появления у него ускорения) было действие, оказываемое на него другими телами.

Мерой этого действия является векторная физическая величина, называемая силой.

Если сила к телу не приложена (F=0), то это означает, что никакого действия на него не оказывается, и потому скорость такого тела относительно Земли (а также относительно любой другой инерциальной системы отсчета) будет оставаться неизменной. Если же, наоборот, сила F ≠ 0, то тело испытывает некоторое воздействие и его скорость будет изменяться. Ускорение, которое приобретает при этом тело, зависит как от приложенной силы, так и от массы данного тела. Напомним, что масса m характеризует инертность тела.

Связь между ускорением, силой и массой выражает второй закон Ньютона:

Произведение массы тела на его ускорение равно силе, с которой на него действуют окружающие тела.

Математически второй закон Ньютона записывается в виде следующей формулы:Сила есть масса, умноженная на ускорениеЕсли к телу (материальной точке) приложено несколько сил, то под F в формуле (8.1) следует понимать их равнодействующую. Когда равнодействующая F приложенных к телу сил равна нулю, скорость тела относительно Земли остается неизменной. Если же эта равнодействующая отлична от нуля, то у тела появляется ускорение, направление которого совпадает с направлением равнодействующей силы.

Выразим из второго закона Ньютона ускорение. Получаем:Ускорение равно силе, поделенной на массуОтсюда можно вывести два следствия:

  1. Чем больше сила, приложенная к данному телу, тем больше его ускорение и, следовательно, тем быстрее изменяется скорость движения этого тела.
  2. Чем больше масса тела, тем меньшее ускорение оно получает в результате действия данной силы и потому тем медленнее изменяет свою скорость.

На основании второго закона Ньютона вводится единица силы — ньютон (1 Н). 1 Н — это сила, с которой нужно действовать на тело массой 1 кг, чтобы сообщить ему ускорение 1 м/с2.

На практике применяются и другие единицы силы, например килоньютон и миллиньютон:

1кН= 1000 Н, 1 мН = 0,001 Н.

Второй закон Ньютона иногда называют основным законом динамики. После его открытия стало возможным решать такие задачи о движении тел, которые до Ньютона казались неразрешимыми. Многие, казавшиеся ранее непонятными явления теперь были объяснены на основе ясных и четких законов физики.

После выхода «Математических начал натуральной философии» теория Ньютона стала быстро распространяться по всей Европе. Сочинение Ньютона переводилось на многие языки. Популярность новой теории стала столь велика, что даже были организованы женские курсы «Ньютонизм для дам».

О том, как встретили современники Ньютона его гениальный труд, можно судить из следующих слов его издателя: «Едва ли можно передать словами, сколько света, сколько величия в этом превосходном сочинении нашего знаменитейшего автора. Его величайший и счастливейший гений разрешил такие труднейшие задачи и достиг таких пределов, что не было и надежды, что человеческий ум в состоянии до них возвыситься».

1. Что является причиной изменения скорости тел? Приведите примеры. 2. Мерой чего является сила? 3. Сформулируйте второй закон Ньютона. 4. Что можно сказать о скорости и ускорении тела, к которому не приложена никакая сила (F = 0)? 5. Какие два следствия вытекают из второго закона Ньютона? 6. Как называется единица силы?

phscs.ru

Три закона Ньютона | Физика

Раздел механики, в котором изучают, как взаимодействие тел влияет на их движение, называют динамикой.

Основные законы динамики открыли итальянский ученый Галилео Галилей и английский ученый Исаак Ньютон. Вы изучали эти законы в курсе физики основной школы. Напомним их.Галилей и Ньютон

1. Первый закон ньютона (закон инерции)

Повторим один из опытов, которые поставил итальянский ученый Галилео Галилей.

Поставим опыт Будем скатывать шар по наклонной плоскости и наблюдать за его дальнейшим движением по горизонтальной поверхности.Если она посыпана песком, шар остановится очень скоро (рис. 13.1, а).Если она покрыта тканью, шар катится значительно дольше (рис. 13.1, б).А вот по стеклу шар катится очень долго (рис. 13.1, в).На основании этого и подобных опытов Галилей открыл закон инерции: если на тело не действуют другие тела или действия других тел скомпенсированы, то тлело движется равномерно и прямолинейно или покоится.

Сохранение скорости тела, когда на него не действуют другие тела или действия других тел скомпенсированы, называют явлением инерции.

? 1. Почему при встряхивании мокрого зонта с него слетают капли воды?

Особенно красиво смотрится явление инерции в фигурном катании (рис. 13.2).

Закон инерции называют также первым законом Ньютона, потому что Ньютон включил его в качестве первого закона в систему трех законов динамики, которые называют «тремя законами Ньютона».

Инерциальные системы отсчета

Закон инерции выполняется с хорошей точностью в системе отсчета, связанной с Землей. Но он не выполняется, например, в системе отсчета, связанной с тормозящим автобусом: при резком торможении пассажиры отклоняются вперед, хотя на них не действуют направленные вперед силы.Системы отсчета, в которых выполняется закон инерции, называют инерциальными.

Инерциальных систем отсчета бесконечно много. Ведь если некоторая система отсчета является инерциальной, то инерциальной будет любая другая система отсчета, движущаяся относительно нее прямолинейно и равномерно.

Сформулируем теперь первый закон Ньютона с указанием систем отсчета, в которых он выполняется.

Существуют системы отсчета (называемые инерциальными), относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действия других тел скомпенсированы.

Изучать влияние взаимодействия тел на их движение удобнее всего именно в инерциальных системах отсчета, потому что в этих системах отсчета изменение скорости тела обусловлено только действием других тел на это тело.

Принцип относительности Галилея

Как показывает опыт, во всех инерциальных системах отсчета все механические явления протекают одинаково при одинаковых начальных условиях.

Это утверждение называют принципом относительности Галилея.

В справедливости принципа относительности Галилея легко убедиться, сидя в поезде, который плавно движется с постоянной скоростью. В таком случае все опыты с механическими явлениями, поставленные в вагоне, дадут одинаковые результаты независимо от того, едет поезд или стоит: например, лежащее на столе яблоко будет покоиться, а свободно падающие предметы будут падать вертикально вниз (относительно вагона!).

Поэтому пассажир может определить, едет поезд или стоит на станции, только посмотрев в окно (рис. 13.3).

2. Второй закон ньютона

Равнодействующая

Как вы уже знаете из курса физики основной школы, силы – векторные величины: каждая сила характеризуется числовым значением (модулем) и направлением. Силы измеряют с помощью динамометров. Единицей силы в СИ является 1 ньютон (Н). Определение ньютона мы дадим позже.

Если на тело, которое можно считать материальной точкой, действуют несколько сил, то их можно заменить одной силой, которая является векторной суммой этих сил. Ее называют равнодействующей.

На рисунке 13.4 показано, как найти равнодействующую двух сил: а

? 2. К телу приложены две силы, равные по модулю 1 Н и 2 Н. Отвечая на следующие вопросы, сделайте пояснительные чертежи.а) Какое наименьшее значение может принимать равнодействующая этих сил? Как направлены силы в этом случае?б) Какое наибольшее значение может быть у равнодействующей этих сил? Как направлены силы в атом случае?в) Может ли равнодействующая этих сил быть равной 2 Н?

? 3. К телу приложены две силы, равные по модулю 3 Н и 4 Н. Может ли их равнодействующая быть равной 5 Н? Если да, то чему в этом случае равен угол между приложенными силами?

? 4. К телу приложены три равные по модулю силы по 1 Н каждая. Как они должны быть направлены, чтобы:а) равнодействующая была равна 1 Н?б) равнодействующая была равна нулю?в) равнодействующая была равна 2 Н?

Масса тела

В курсе физики основной школы рассказывалось также об опытах, которые доказывают, что под действием постоянной силы тело движется с постоянным ускорением.

Коэффициент пропорциональности между силой и ускорением характеризует инертные свойства тела и называется массой тела. Чем больше масса тела, тем большую силу надо приложить к телу, чтобы сообщить ему то же ускорение.

Единицей массы в СИ является 1 килограмм (кг). Это масса эталона, хранящегося в Международном бюро мер и весов (Франция). Приближенно можно считать, что одному килограмму равна масса 1 л воды.

Обозначают массу буквой m.

Второй закон Ньютона

Соотношение между равнодействующей всех сил, приложенных к телу, массой тела и его ускорением Ньютон сформулировал как второй из трех основных законов механики.

Равнодействующая всех сил, приложенных к телу, равна произведению массы тела на его ускорение: В инерциальной системе отсчета сила является причиной ускорения, поэтому второй закон Ньютона часто записывают так:Итак, приобретаемое телом ускорение прямо пропорционально равнодействующей приложенных к телу сил, одинаково с ней направлено и обратно пропорционально массе тела.

Заметим, что второй закон Ньютона справедлив только в инерциальных системах отсчета. Напомним: в этих системах отсчета ускорение тела обусловлено только действием на него других тел.

Единицу силы в СИ определяют на основе второго закона Ньютона: сила в 1 ньютон сообщает телу массой 1 кг ускорение 1 м/с2. Поэтому 1 Н = 1 кг * м/с2.

Сила тяжести

Как вы уже знаете, под действием притяжения Земли все тела падают с одинаковым ускорением – ускорением свободного падения . Силу притяжения, действующую на тело со стороны Земли, называют силой тяжести и обозначают т.

Когда тело свободно падает, на него действует только сила тяжести, поэтому она и является равнодействующей всех приложенных к телу сил. При атом тело движется с ускорением , поэтому из второго закона Ньютона получаем:

? 5. С какой силой Земля притягивает:а) килограммовую гирю?б) человека массой 60 кг?

Сила, скорость и ускорение – кто «третий лишний»?

Неочевидное следствие второго закона Ньютона состоит в том, что он утверждает: направление ускорения тела совпадает с направлением равнодействующей приложенных телу сил. Скорость же вела может быть при этом направлена как угодно!

Поставим опыт

Бросим шарик вниз, затем – вверх, а потом – под углом к горизонту (рис. 13.5)

На шарик во время всего движения действует только направленная вниз сила тяжести. Однако в первом случае (а) скорость шарика совпадает по направлению с этой силой, во втором случае (б) – скорость вначале противоположна силе тяжести, а в третьем (в) – скорость направлена под углом к силе тяжести (например, в верхней точке траектории скорость перпендикулярна силе тяжести).

? 6. Тело равномерно движется по окружности. Чему равен угол между скоростью тела и равнодействующей?

? 7. Чему равен угол между скоростью автомобиля и равнодействующей приложенных к нему сил, когда автомобиль:а) разгоняется на прямой дороге?б) тормозит на прямой дороге?в) движется равномерно по дуге окружности?

3. Третий закон ньютона

Поставим опыт

Предложим первокласснику и десятикласснику посоревноваться в перетягивании каната, стоя на скейтбордах: тогда трением между колесами и полом можно пренебречь (схема опыта показана на рисунке 13.6).

Мы увидим, что оба соперника движутся с ускорением. Значит, на каждого из них действу другого. Ускорения соперников направлено противоположно, причем ускорение первоклассника намного больше ускорения десятиклассника.

Точные опыты, подобные описанном выше, показывают, что модули ускорений обратно пропорциональны массам тел:

a1/a2 = m2/m1.

Поскольку ускорения направлены противоположно,

Согласно второму закону Ньютона m11 = 1 и m22 = 2, где 1 – сила, действующая на первое тело со стороны второго, а 2 – сила, действующая на второе тело со стороны первого.

Из соотношения (5) следует, что 1 = –2. Это и есть третий закон Ньютона.

Тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.

Свойстве сил, с которыми тела взаимодействуют друг с другом:– эти силы обусловлены одним и тем же взаимодействием и поэтому имеют одну и ту же физическую природу;– эти силы направлены вдоль одной прямой;– эти силы приложены к разным телам и поэтому не могут уравновешивать друг друга.

Примеры проявления третьего закона Ньютона

Когда камень падает на Землю, на него действует сила тяжести 1 со стороны Земли, а на Землю – сила 2 притяжения со стороны камня (рис. 13.7, для наглядности масштаб не соблюден). Обе эти силы относятся к силам всемирного тяготения.

? 8. Согласно третьему закону Ньютона F1 = F2. Почему же ускорение камня заметно, а ускорение Земли – нет?

Когда камень лежит на Земле, на него кроме силы тяжести, которую будем обозначать теперь т, действует еще направленная вверх сила давления со стороны опоры (рис. 13.8, а). Она направлена перпендикулярно поверхности опоры, поэтому ее называют силой нормальной реакции (перпендикуляр называют часто нормалью). (Когда тело можно считать материальной точкой, все действующие на него силы желательно изображать на чертежах приложенными в одной точке.)

Когда камень покоится, его ускорение равно нулю. Значит, согласно второму закону Ньютона равнодействующая приложенных к камню сил и т, равна нулю (будем говорить, что в таком случае силы уравновешивают друг друга):

Отсюда следует:

Опора давит на камень силой , направленной вверх, а камень, по третьему закону Ньютона, давит на опору силан , направленной вниз (рис. 13.8, 6). Обе эти силы – силы упругости.

Силу, с которой тело вследствие действия на него силы тяжести давит на горизонтальную опору или растягивает вертикальный поднес, называют весом тела.

Итак, – это вес камня. По третьему закону Ньютона

Из формул (8) и (9) следует:

Итак, вес покоящегося тела равен действующей на это тело силе тяжести. Однако несмотря на это вес и сила тяжести существенно отличаются друг от друга:– эти силы приложены к разным телам: вес действует на опору или поднес, а сила тяжести – на само тело;– эти силы имеют разную физическую природу: вес – это сила упругости, а сила тяжести – проявление сил всемирного тяготения.

Кроме того, как мы увидим несколько позже (§ 16), вес может быть не равен силе тяжести и даже быть равным нулю.

Дополнительные вопросы и задания

9. Ускорение тела в некоторой инерциальной системе отсчета равно 3 м/с2 и направлено вдоль оси x. Чему равно ускорение этого тела в инерциальной системе отсчета, движущейся относительно заданной со скоростью 4 м/с, направленной вдоль оси y? Есть ли здесь лишние данные?

10. Брусок массой 0,5 кг соскальзывает с наклонной плоскости с углом наклона 30º. Скорость бруска увеличивается. Ускорение бруска равно 2 м/с2. Изобразите на чертеже равнодействующую приложенных к бруску сил. Чему она равна? Есть ли в задаче лишние данные?

11. Зависимость координаты x автомобиля от времени выражается в единицах СИ формулой x = 20 – 10t + t2. Ось x направлена вдоль дороги, масса автомобиля 1 т.а) Чему равна равнодействующая приложенных к автомобилю сил?б) Как она направлена в начальный момент – в направлении скорости автомобиля или противоположно ей?

12. Автомобиль массой 1 т едет со скоростью 72 км/ч по выпуклому мосту, имеющему форму дуги окружности радиусом 50 м. Сделайте чертеж и ответьте на вопросы.а) Чему равна и как направлена равнодействующая сил, приложенных к автомобилю в верхней точке моста?б) Какие силы действуют на автомобиль в этой точке? Как они направлены и чему они равны?в) Во сколько раз вес автомобиля в верхней точке моста меньше действующей на автомобиль силы тяжести?

phscs.ru