Пример деления числа на число. Таблица деления. По деление чисел деление


правила, секретные примеры, упражнения, игры

Деление – одна из четырех основных математических операций (сложение, вычитание, умножение). Деление, как и остальные операции важно не только в математике, но и в повседневной жизни. Например, вы целым классом (человек 25) сдадите деньги и купите подарок учительнице, а потратите не все, останется сдача. Так вот сдачу вам надо будет поделить на всех. В работу вступает операция деления, которая поможет вам решить эту задачу.

Деление – интересная операция, в чем мы и убедимся с вами в этой статье!

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение. 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

  1. Найти сумму цифр делимого.

  2. Поделить на 3 или 9 (в зависимости от того, что вам нужно).

  3. Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Умножение и деление

Умножение и деление – это противоположные друг другу операции. Умножение можно использовать как проверку деления, а деление – как проверку умножения. Подробнее узнать об умножении и освоить операцию можете в нашей статье про умножение. В которой подробно описано умножение и как правильно выполнять. Там же найдете таблицу умножения и примеры для тренировки.

Приведем пример проверки деления и умножения. Допустим, дан пример 6*4. Ответ: 24. Тогда проверим ответ делением: 24:4=6, 24:6=4. Решено верно. В этом случае проверка производится путем деления ответа на один из множителей.

Или дан пример на деление 56:8. Ответ: 7. Тогда проверкой будет 8*7=56. Верно? Да. В данном случае проверка производится путем умножения ответа на делитель.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление 3 класс

В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:

Задача 1. Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?

Задача 2. На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?

Задача 3. Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?

Задача 4. Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?

Деление 4 класс

Деление в четвертом классе – более серьезное, чем в третьем. Все вычисления проводятся методом деления в столбик, а числа, которые участвуют в делении – не маленькие. Что же такое деление в столбик? Ответ можете найти ниже:

Деление в столбик

Что такое деление в столбик? Это метод позволяющий находить ответ на деление больших чисел. Если простые числа как 16 и 4, можно поделить, и ответ понятен – 4. То 512:8 в уме для ребенка не просто. А рассказать о технике решения подобных примеров – наша задача.

Рассмотрим пример, 512:8.

1 шаг. Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг. Деление начинаем слева направо. Сначала берем цифру 5:

3 шаг. Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг. Ставим точку под делителем.

5 шаг. После 51 стоит еще цифра 2, а значит в ответе будет еще одно число, то есть. частное – двузначное число. Ставимвторую точку:

6 шаг. Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг. Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг. Затем из 51 вычитаем 48 и получаем ответ 3.

* 9 шаг*. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Итак, ответ 64, без остатка. Если бы делили число 513, то в остатке была бы единица.

Деление трехзначных

Деление трехзначных чисел выполняется методом деления в столбик, который был объяснен на примере выше. Пример как раз-таки трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод такого деления довольно прост. 2/3 – делимое, 1/4 – делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3)(4/1), (2/3)*4, это равно – 8/3 или 2 целые и 2/3.Приведем еще пример, с иллюстрацией для наилучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, переворачиваем делитель 2/5 и получаем 5/2, заменяя деление на умножение. Получаем тогда (4/7)*(5/2). Производим сокращение и ответ:10/7, затем выносим целую часть: 1 целая и 3/7.

Деление числа на классы

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 - класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Деление натуральных чисел

Деление натуральных чисел – это самое простое деление описанные в данной статье. Оно может быть, как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление презентация

Презентация – еще один способ наглядно показать тему деления. Ниже мы найдете ссылку на прекрасную презентацию, в которой хорошо объясняется как делить, что такое деление, что такое делимое, делитель и частное. Время зря не потратите, а свои знания закрепите!

Презентация на тему «Деление»

Примеры на деление

Легкий уровень

28:4=

16:8=

27:3=

32:8=

64:8=

54:6=

42:6=

49:7=

40:8=

Средний уровень

225:15=

512:8=

144:9=

312:6=

315:7=

625:25=

392:4=

984:8=

Сложный уровень

5712:68=

1035:23=

1121:59=

2352:49=

1610:35=

6300:75=

875:35=

297000:270=

385000:11=

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра "Угадай операцию"

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Игра "Упрощение"

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Игра "Быстрое сложение"

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Игра "Визуальная геометрия"

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Играть сейчас

Игра "Копилка"

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Играть сейчас

Игра "Быстрое сложение перезагрузка"

Игра «Быстрое сложение перезагрузка» развивает мышление, память и внимание. Главная суть игры выбрать правильные слагаемые, сумма которых будет равна заданному числу. В этой игре на экране дается три цифры и дается задание, сложите цифру, на экране указывается какую цифру надо сложить. Вы выбираете из трех цифр нужные цифры и нажимаете их. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Играть сейчас

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

В курс входит 30 уроков с полезными советами и упражнениями для развития детей. В каждом уроке полезный совет, несколько интересных упражнений, задание к уроку и дополнительный бонус в конце: развивающая мини-игра от нашего партнера. Длительность курса: 30 дней. Курс полезно проходить не только детям, но и их родителям.

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

cepia.ru

Деление | Математика

Определить, сколько раз нужно взять слагаемым меньшее число 2, чтобы получить большее число 6, значит определить, сколько раз число 2 содержится в 6, или сколько раз число 6 содержит 2.

Число 2 содержится в 6 три раза, ибо, чтобы получить 6, нужно взять сумму трех равных слагаемых:

6 = 2 + 2 + 2

Найти, сколько раз число 2 содержится в 6, значит разделить 6 на 2.

Определение. Деление есть такое действие, в котором по двум данным числам определяют, сколько раз одно число содержится в другом.

Данные числа в делении называются делимым и делителем, искомое называется частным.

Делимое есть то число, которое содержит другое.

Делитель есть то число, которое содержится в другом.

Частное показывает, сколько раз делитель содержится в делимом.

В данном примере делимое есть 6, делитель 2, частное 3.

Разделить 6 на 2 значит также разбить 6 на 2 равных слагаемых и отыскать их величину. Число 6 представится при помощи двух равных слагаемых в виде:

6 = 3 + 3

Каждое из равных слагаемых называется частью делимого.

Посредством деления целых чисел также узнается, как велико каждое слагаемое, если делимое разобьется на столько равных слагаемых, сколько в делителе единиц.

В этом случае делимое есть то число, которое делится или разбивается на равные части. Делитель показывает, на сколько равных частей делится делимое. Частное показывает, сколько приходится на каждую часть.

Способы деления

Имея два числа 12 и 4, мы можем разделить 12 на 4 различными способами.

  1. С помощью сложения мы можем определить, сколько раз нужно взять 4 слагаемым для того, чтобы получить в сумме 12. Так, взяв 4 слагаемым 3 раза, находим в сумме:

    4 + 4 + 4 = 12,

    следовательно, 4 содержится в 12 три раза.

  2. С помощью вычитания определяем, сколько раз можно из большего числа 12 вычесть меньшее 4. При этом мы вычитаем делитель до тех пор, пока это возможно. Так, вычитая последовательно из 12 по 4, имеем:

    12 - 4 = 88 - 4 = 44 - 4 = 0

    Отсюда находим, что можно вычесть 4 из 12 ровно три раза.

    Деление есть сокращенное вычитание равных вычитаемых.

  3. Наконец, посредством умножения, мы можем определить, на какое число нужно помножить 4, чтобы получить 12. Умножая последовательно 4 на 1, 2, 3, находим, что для того, чтобы получить 12, нужно 4 помножить на 3.

Различные случаи при делении

При делении целых чисел бывают два случая:

  1. Разделяя 12 на 4, мы находим в частном 3. Делитель 4 содержится ровно 3 раза в делимом 12. Вычитая последовательно из 12 по 4, мы могли вычесть число 4 ровно три раза и не получили никакого остатка. В этом случае говорят, что деление совершилось нацело или без остатка. Умножив частное 3 на делитель 4, получаем делимое 12.

  2. Разделяя 26 на 8, мы при последовательном вычитании получаем:

26 - 8 = 1818 - 8 = 1010 - 8 = 2

Далее нельзя продолжать вычитания, потому что из 2 нельзя вычесть делитель 8. Число 2 называют остатком.

Остаток всегда меньше делителя. В этом случае говорят, что деление не совершается нацело или деление совершается с остатком.

Разделяя 26 на 8, мы могли вычесть делитель 8 три раза, и у нас получился остаток 2. Число 3 мы будем называть целым частным. Целое частное есть не полное частное, ибо оно не выражает вполне, сколько раз меньшее число содержится в большем. Число 8 не содержится в 26 ровно 3 раза. В этом случае говорят: число 8 содержится в 26 три раза и еще получается остаток. Умножив делитель 8 на целое частное 3, мы не получим делимого 26, а число 24 — меньшее делимого. Чтобы получить делимое, нужно к этому произведению прибавить еще остаток 2.

Целое частное иногда называют просто частным.

Итак, при делении мы имеем два случая:

  1. Деление нацело или без остатка. Когда делитель содержится в делимом ровное число раз, тогда деление совершается нацело или без остатка. Частное выражает, сколько раз делитель содержится в делимом. Делимое равно делителю, умноженному на частное. В этом случае деление есть действие в котором по данному произведению и одному из производителей находится другой производитель.

    Если дается произведение и множимое, отыскивают множитель, то есть число равных слагаемых; если дается произведение и множитель, отыскивают множимое, то есть величину равных слагаемых.

  2. Деление с остатком. Когда делитель не содержится в делимом ровное число раз, тогда деление не совершается нацело, или деление совершается с остатком. Остаток всегда меньше делителя и делимое равно произведению делителя на целое частное, сложенное с остатком.

При делении целых чисел делимое всегда уменьшается во столько раз, сколько в делителе единиц, поэтому деление есть действие, обратное умножению.

Знак деления

  1. Действие деления изображается знаком двоеточия ÷, который ставится между делимым и делителем.

    Деление числа 6 на 2 изображают письменно:

    6 ÷ 2 = 3 частное.

  2. Действие деления обозначается также начертанием |–, где вертикальная черта отделяет делимое, а горизонтальная делитель от частного.

    В данном примере имеем:

    Обозначение деления в столбик

В нашем примере деление изображается письменно:

Запись деления в виде дроби

Знак деления прешел к нам от древних математиков.

Основные приемы при делении

Делить значит последовательно вычитать делитель из делимого, пока это возможно. Этот способ деления можно считать общим. Прием этот, однако, приводит к длинным вычислениям, если делимое очень велико, поэтому существуют различные сокращенные приемы деления.

Чтобы определить частное в том случае, когда оно выражается одной цифрой, прибегают к таблице умножения.

Чтобы разделить 27 на 3 мы пишем

Варианты записи деления

Для частного выбираем такое число, чтобы, умножив делитель на частное, получить делимое. Чтобы найти цифру частного, мы пробуем умножать делитель на разные числа или, как обыкновенно говорят, задаемся разными числами, и сравниваем произвдение делителя на частное с делимым.

Разделяя 27 на 3 и перебирая в уме все произведения 3 на разные числа, содержащиеся в таблице умножения, находим, что произведение 3 × 9 составляет 27 и потому пишем в частном 9. Вычитая произведение делителя на частное из делимого, получаем в остатке нуль.

Само вычисление выражают письменно:

Деление 27 на 3

Деление совершилось нацело.

Иногда делитель не содержится в делимом ровное число раз; так, разделяя 27 на 4, мы не находим в таблице целого числа, которое, будучи помножено на 4, дало бы 27; тогда деление не совершается нацело.

Отыскивая целое частно, мы имеем при этом три случая:

  1. Или мы задаемся очень малым числом; так, для данного примера, задавшись в частном 5 и умножив 4 на 5, имеем 20. Подписав произведение 20 под делимым и вычитая из 27, имеем:

    Подбор делителя

    в остатке число 7 больше делителя 4. Это показывает, что частное 5 мало и его нужно увеличить.

  2. Или, взяв для частного 7 и умножив его на делителя 4, получаем произведение 28 больше делимого, что показывает, что мы задались в частно очень большим числом. В таком случае нужно уменьшить цифру частного 7.

  3. Взяв для частного 6, мы ход вычисления выражаем письменно:

    Подбор частного

    словесно: 4 в 27 содержится 6 раз, 4 * 6 = 24, подписываем 24 под делимым, вычитаем и получаем остаток 3. Остаток 3 меньше делителя, следовательно, цифра частного верна. Отсюда выводим следующее:

Правило определения частного:

  1. Если при делении остаток более или равен делителю, цифра частного мала и ее нужно увеличить.

  2. Если произведение делителя на частное больше делимого, цифра частно велика и ее нужно уменьшить.

  3. Если остаток меньше делителя, цифра частного верна.

Это правило показывает, что при делении нужно для частного выбирать такое число, чтобы остаток был меньше делителя. Задаваться так, значит задаваться наибольшим целым числом.

В данном примере 27 не делится нацело на 4, а получается остаток 3; число 6 есть целое частное и

27 = 4 × 6 + 3 = 24 + 3

Делимое 27 равно произведению делителя 4 на целое частное 6, сложенному с остатком 3.

Деление многозначного числа на однозначное

Частное от деления многозначного числа на однозначное иногда выражается числом, состоящим также из нескольких цифр. В этом случае деление распадается на несколько отдельных действий.

Разделим 702 на 3. Частное содержит три цифры. Оно больше 100 и меньше 1000, ибо делимое больше 300 (3 × 100) и меньше 3000 (3 × 1000). Включая три цифры, частное содержит сотни, десятки и единицы. В данном случае разбиваем деление на три отдельных действия, то есть отыскиваем последовательно сотни, потом десятки и, наконец, единицы частного. Самое действие начинаем с сотен.

  1. Отыскиваем сотни частного. Цифра сотен частного может происходить от деления сотен делимого на делитель 3. Десятки и единицы делимого не имеют никакого влияния на сотни частного, поэтому на них пока не обращаем внимания. Наибольшее число сотен в частном есть 2, ибо 3 содержится в 7 сотнях 2 сотни раз; пишем в частном 200. Умножая 200 на 3 и вычитая произведение 600 из делимого, получаем первый остаток 132.

    Сотни, десятки и единицы частного

  2. Отыскиваем десятки частного. В остатке 132 находится 12 десятков. Единицы делимого не имеют влияния на десятки частного. Разделив 13 на 3, находим, что в частном могут быть только 4 десятка, - пишем 40 в частном. Умножая 40 на 3 и вычитая произведение 120, получаем в остатке 12.

  3. Отыскиваем единицы частного. Разделив 12 на 3, находим для единиц частного 4. Умножая 4 на 3 и вычитая произведение 12, получаем в остатке 0.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, деление изобразится письменно:

Пример деления в столбик

словесно:

  1. Отделяем 7 — одну цифру делимого; 3 в 7 содержится 2 раза, - пишем в частном 2; умножая на нее делителя 3 и вычитая произведение 6 из 7, получаем первый остаток 1.

  2. Сносим 3 — следующую цифру делимого; 3 в 13 содержится 4 раза, 3-жды 4 составляет 12; вычитая 12 из 13, получаем в остатке 1.

  3. Сносим 2 следующую цифру делимого; 3 в 12 содержится 4 раза, пишем в частном 4; 3-жды 4 составляет 12. Вычитая 12, получаем в остатке нуль и в частном 244.

Пример. Разделить 2417 на 3. Ход вычисления выразится письменно:

Деление 2417 на 3

словесно:

  1. Отделив одну цифру 2, мы видим, что 3 в 2 не содержится целое число раз, поэтому нужно отделить две цифры; 3 в 24 содержится 8 раз, - пишем 8 в частном. Умножив 8 на делителя 3 и вычитая произведение 24, получаем в остатке нуль.

  2. Сносим следующую цифру 1; 3 в 1 не содержится, - пишем в частном нуль.

  3. Сносим следующую цифру 7; 3 в 17 содержится 5 раз, - пишем в частном 5; 3-жды 5 составляет 15; вычитая 15 из 17, получим в остатке 2 и целое частное 805.

Деление многозначного числа на многозначное

При делении многозначного числа на многозначное поступаем точно так же, как поступали при делении многозначного числа на однозначное.

Разделяя число 37207 на 47, мы прежде всего определяем, из скольких цифр состоит частное. Частное меньше 1000 и больше 100, ибо 37207 меньше 47000 (47 × 1000) и больше 4700 (47 × 100), следовательно, частное состоит из сотен, десятков и единиц. Начиная с сотен, мы определяем каждую цифру частного отдельно:

  1. Определяем сотни частного:

    Делимое 37207 имеет 372 сотни. Десятки и единицы делимого не имеют влияния на цифру сотен частного. В частном может быть только 7 сотен, ибо 47 содержится в 372 семь раз; пишем в частном 700.

    Умножая делитель на частное и вычитая из делимого, получаем первый остаток 4307.

    Определение сотен, десятков и единиц частного

  2. Определяем десятки частного:

    Остаток 4307 содержит 430 десятков. Единицы не имеют влияния на цифру десятков частного. Делитель 47 содержится в 430 девять раз; пишем в частном 90.

    Умножая 90 на частное 47 и вычитая произведение 4330, получаем в остатке 77.

  3. Определяем единицы частного:

    47 содержится в 77 один раз. Пишем в частном 1 и, вычитая из 77 произведение единицы на делитель, получаем в остатке 30.

Итак, после деления имеем в целом частном 791 и в остатке 30.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, ход вычисления изобразится письменно:

Деление многозначных чисел

словесно:

  1. Отделяем в делимом от левой руки к правой столько цифр, чтобы делитель мог содержаться в отделенной части делимого. В данном случае отделяем 3 цифры, 47 содержится в 372 семь раз; умножаем делитель 47 на 7, цифру частного, и, вычитая произведение 47 × 7 = 329 из 372, получаем в остатке 43.

  2. К остатку 43 сносим 0, следующую цифру делимого; 47 содержится в 430 девять раз, пишем в частном 9. Умножая 47 на 9 и вычитая произведение 423 из 430, получаем остаток 7.

  3. Сносим к остатку следующую цифру частного 7; 47 содержится в 77 один раз. Пишем единицу в частном.

Умножая ею делитель и вычитая 47 из 77, получаем в остатке 30 и в целом частно 791.

Пример. Разделить 671064 на 335. Деление изобразится письменно:

Пример деления многозначных чисел

словесно:

  1. Отделяем 671 в делимом; 335 содержится в 671 два раза, пишем в частном 2. Умножая 335 на 2 и вычитая произведение 670, получим в остатке 1.

  2. Сносим 0, следующую цифру делимого; 335 не содержится в 10, - пишем для второй цифры частного 0.

  3. Сносим 6, следующую цифру делимого; 335 не содержится в 106, - пишем для третьей цифры частного 0.

  4. Сносим следующую цифру делимого 4; 335 содержится в 1064 три раза, - пишем в частном 3. Умножая делитель на 3 и вычитая произведение, получим в остатке 59 и в целом частном 2003.

Из предложенных примеров выводим следующее правило:

  1. Чтобы разделить многозначное число на однозначное или многозначное, нужно отделить в делимом от левой руки к правой столько цифр, сколько их находится в делителе. Если делитель не содержится, отделяют в делимом одной цифрой больше. Разделив отделенное число на делитель, получают первую цифру частного, умножают ей делитель и полученное произведение вычитают из отделенной части делимого.

  2. К остатку сносят следующую цифру делимого и снова задаются.

  3. Если при этом получается число меньше делителя, пишут в частном нуль, сносят следующую цифру и снова задаются.

  4. Получив новую цифру частного, поступают с нею так же, как и с первой цифрой.

  5. Деление продолжают до тех пор, пока не снесут всех цифр делимого и не получат таким образом всех цифр частного.

Всякий раз, когда приходится делить, нужно задаваться в частном такою цифрой, чтобы остаток был меньше делителя. Чтобы легче найти такую цифру частного, при делении многозначного числа на многозначное обращают внимание на одну или две старшие цифры делителя и задаются только ими в соответствующей части делимого. При этом в делимом и в делителе отделяют от правой руки к левой одинаковое число цифр. Так, определяя, сколько раз содержится 6373 в 27302, мы задаемся четырьмя, ибо 6 в 27 содержится 4 раза.

Правила деления многозначных чисел

Полученная при этом цифра частного будет или равна или больше действительной. В последнем случае ее нужно уменьшить.

Иногда при делении не подписывают произведение цифры частного на делитель, а, подразумевая его в уме, подписывают один остаток. Сокращая таким образом деление, изображают его письменно:

Пример сокращенного деления

словесно:

  1. 8 в 43 содержится 5 раз; 5-ю 8 — сорок. Вычитая 40 из 43, получаем в остатке 3.

  2. Сносим 2; 8 в 32 содержится 4 раза; 4-жды 8 составляет 32. Вычитая 32, получим в остатке нуль.

  3. Сносим 8; 8 в 8-ми содержится 1 раз, 1-жды 8 составляет 8. Вычитая 8, получаем в остатке нуль и в частном 541.

Деление на 10, 100, 1000 и т. д.

Разделяя число на 10, мы десятки делимого обращаем в единицы, сотни в десятки, тысячи в сотни, вообще понижаем на единицу все порядки делимого. Этого мы достигаем, отделяя запятою цифру единиц. Число до запятой будет выражать частное, а после запятой — остаток.

Разделяя на 100, мы понижаем все порядки делимого на две единицы, для чего отделяем запятою от правой руки к левой две цифры и т. д. Отсюда правило:

Чтобы разделить какое-нибудь число на единицу с нулями, нужно от правой руки к левой отделить столько цифр, сколько нулей в делителе; тогда число до запятой выражает целое частное, а после запятой — остаток.

Пример. Разделяя 30207 на 100. Отделяя справа 2 цифры, находим 302,07. Целое частное будет 302, а остаток 7.

Деление на число, оканчивающееся нулями

Разделяя число 27057 на 400 и поступая при этом по общему правилу

Деление на число с нулями в конце

мы замечаем, что две последние цифры делимого не оказывают никакого влияния на частное. Они являются в остатке без всякой перемены. Откуда правило:

Если делитель оканчивается нулями, отделяют в делимом запятою от правой руки к левой столько цифр, сколько зачеркнуто нулей в делителе, и делят часть делимого до запятой на значащие цифры делителя. Отделенные цифры делимого приписывают к остатку.

В данном примере деление представится в виде

fПравило деление на число, оканчивающееся нулями

Если делимое и делитель оканчиваются нулями, их зачеркивают поровну в делимом, делителе и производят деление; зачеркнутые нули делимого приписывают к остатку.

Чтобы разделить 27300 на 4100, делим 273 на 41:

Делимое и делитель оканчиваются нулями

Частное будет 6, а остаток 2700.

Число цифр частного. При делении отделяют в делимом от левой руки к правой столько цифр, сколько их находится во делителе, или одною больше. Каждой оставшейся цифре делимого соответствует особая цифра частного, следовательно, число цифр частного будет равно или разности числа цифр делимого и делителя или на единицу больше этой разности.

Зависимость между данными и искомыми деления

При делении целых чисел мы имеем два случая: а) деление нацело, или без остатка, и б) деление с остатком.

Каждому из этих случаев соответствует особая зависимость между данными и искомыми деления.

Деление нацело или без остатка

При делении нацело

  1. Частное равно делимому, разделенному на делитель.

    Разделяя 42 на 7, имеем в частном 6; следовательно,

    42 ÷ 7 = 6, или 6 = 42 ÷ 7

  2. Делимое равно делителю, умноженному на частное.

    42 = 6 × 7

  3. Так как делитель и частное — два множителя, произведение которых равно делимому, то делитель равен делимому, разделенному на частное.

    7 = 42 ÷ 6

Деление с остатком

При делении с остатком

  1. Делимое равно произведению делителя на целое частное, сложенное с остатком.

    При делении 47 на 6, имеем в целом частном 7, в остатке 5.

    Делимое 47 = 6 × 7 + 5.

  2. Делимое без остатка делится нацело на делитель и на целое частное.

Разность делимого без остатка равна произведению делителя на целое частное, то есть эта разность при делении на делитель дает целое частное, при делении на целое частное дает делитель.

maths-public.ru

Деление чисел | Формулы с примерами

Что такое деление натуральных чисел?

Формула деленияДеление - это нахождение одного из сомножителей по произведению и другому сомножителю.

Исходное произведение называется делимым, данный сомножитель - делителем, результат - частным.

Варианты обозначений:

Варианты обозначений деления Примеры
4 : 2 = 2;9 : 3 = 3; 12 : 3 = 4;20 : 5 = 4;

Если частное c = a : b не является натуральным числом, то принято говорить, что a не делится (нацело) на b.

Пример
7 : 3 - 7 не делится (нацело) на 3

Свойства деления натуральных чисел

1. a : 1 = a ;

2. a : a = 1 ;

3. a : b = ( a • n ) : ( b • n ) для любого натурального числа n ;

4. ( a : b ) : c = a : ( b • c ) ;

5. a : ( b : c ) = ( a : b ) • c ;

6. ( a • b ) : c = ( a : c ) • b ;

7. ( a • b ) : c = a • ( b : c ) ;

Примеры
10 : 1 = 10;

23 : 23 = 1;

(16 • 2) : (8 • 2) = 16 : 8 = 2;

(3 • 6) : 2 = 3 • (6 : 2) = 3 • 3 = 9.

Деление уголком

Такое деление применяется в случае, когда надо одно число (делимое), разделить на другое целое число (делитель), меньше 10.

Если в результате деления получается целое число и остаток, этот остаток нужно перенести к следующей цифре делимого.

Пример деления уголком

Деление уголком

Объяснение примера деления уголком:

Деление начинаем с левого ряда. Первая цифра 4, на 5 не делится, тогда берем первые два разряда: 48, получаем 9 в первом разряде частного, остаток 3. Добавляем следующий разряд: 36, в частном пишем 7, остаток 1. Далее, к этому остатку добавляем последний разряд делимого: 15. В частном пишем последнюю цифру: 3.

Таблица проверки деления числа на другое без остатка

На Если Примеры
2 Последняя цифра четная 2, 6 ,10, 24, 1000
3 Сумма цифр делится на три 363 + 6 = 9
4 число, образованное из последних двух цифр, делится на 4 211616 x 4 = 4
5 Последняя цифра 5 или 0 10, 20, 35, 1000
6 Последняя цифра четная, а сумма всех цифр делится на 3 6 3246 + 3 + 2 + 4 = 15
9 Сумма цифр делится на 9 81 2798 + 1 + 2 + 7 + 9 = 27
10 Последняя цифра 0 20, 400, 1 700

formula-xyz.ru

Как Объяснить Ребенку + ТОП-10 Примеров

СохранитьSavedRemoved 0

Ребенок и математика

Дети во 2-3 классе осваивают новое математическое действие – деление. Школьнику непросто вникнуть в суть данного математического действия, поэтому ему необходима помощь родителей. Родителям нужно понимать, как именно преподносить ребенку новую информацию. ТОП-10 примеров расскажут родителям о том, как нужно учить детей делению чисел столбиком.

Содержание этой статьи:

Обучение делению в столбик в форме игры

Дети устают в школе, они устают от учебников. Поэтому родителям нужно отказаться от учебников. Подавайте информацию в форме увлекательной игры. Можно поставить задачи таким образом:

  • Организуйте ребенку место для обучения в форме игры. Посадите его игрушки в круг, а ребенку дайте груши или конфеты. Предложите ученику разделить 4 конфеты между 2 или 3 куклами. Чтобы добиться понимания со стороны ребенка, постепенно прибавляйте количество конфет до 8 и 10. Даже если малыш будет долго действовать, не давите и не кричите на него. Вам потребуется терпение. Если ребенок делает что-то неправильно, исправляйте его спокойно. Затем, как он завершит первое действие деления конфет между участниками игры, попросит его вычислить, сколько конфет досталось каждой игрушке. Теперь вывод. Если было 8 конфет и 4 игрушки, то каждой досталось по 2 конфеты. Дайте ребенку понять, что разделить – это значит распределить равное количество конфет всем игрушкам.
  • Обучать математическому действию можно с помощью цифр. Дайте ученику понять, что цифры можно квалифицировать, как груши или конфеты. Скажите, что количество груш, которое требуется разделить – это делимое. А количество игрушек, на которых приходятся конфеты – это делитель.
  • Дайте ребенку 6 груш. Поставьте перед ним задачу: разделить количество груш между дедушкой, собакой и папой. Затем попросите его поделить 6 груш между дедушкой и папой. Объясните ребенку причину, по которой получился неодинаковый результат при делении.
  • Расскажите ученику о делении с остатком. Дайте ребенку 5 конфет и попросите его раздать их поровну между котом и папой. У ребенка останется 1 конфета. Расскажите ребенку, почему получилось именно так. Данное математическое действие стоит рассмотреть отдельно, так как это может вызвать сложности.
Деление чисел

Деление чисел

Обучение в игровой форме может помочь ребенку быстрее понять весь процесс деления чисел. Он сможет усвоить, что наибольшее число делится на наименьшее или наоборот. То есть, наибольшее число – это конфеты, а наименьшее – участники. В столбике 1 числом будет количество конфет, а 2 – количество участников.

Не перегружайте ребенка новыми знаниями. Обучать нужно постепенно. Переходить к новому материалу нужно тогда, когда предыдущий материал закреплен.

вернуться к меню ↑

Обучение делению в столбик при помощи таблицы умножения

Ученики до 5 класса смогут разобраться в делении быстрее, при условии того, что они хорошо знают умножение. Родителям необходимо разъяснить, что деление имеет сходство с таблицей умножения. Только действия противоположны. Для наглядности нужно привести пример:

  • Скажите ученику, чтобы он произвол умножение значений 6 и 5. Ответ – 30.
  • Подскажите школьнику, что число 30 является результатом математического действия с двумя числами: 6 и 5. А именно, результатом умножения.
  • Разделите 30 на 6. В результате математического действия получится 5. Школьник сможет убедиться в том, что деление – это то же, что и умножение, но наоборот.

Можно воспользоваться таблицей умножения для наглядности деления, если ребенок хорошо ее усвоил.

Таблица умножения

Таблица умножения

вернуться к меню ↑

Обучение делению в столбик в тетради

Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.

Пример деления

Пример деления

Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5. Объяснять математическое действие нужно подробно:

  • Напишите в тетради пример: 105 разделить на 5.
  • Запишите это, как при делении в столбик.
  • Расскажите, что 105 – делимое, а 5 – делитель.
  • С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
  • В столбике деления, под числом 5, напишите цифру 2.
  • Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
  • Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
  • В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.

Родителям нужно объяснить, что это деление не имеет остатка.

Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.

Еще один пример деления

Еще один пример деления

вернуться к меню ↑

Обучение делению с остатком

Когда ребенок усвоит материал о делении, можно усложнять задачу. Деление с остатком – это следующая ступень обучения. Объяснять нужно на доступных примерах:

  • Предложите ребенку разделить 35 на 8. Запишите в столбик задачу.
  • Чтобы ребенку было максимально понятно, можно показать ему таблицу умножения. В таблице наглядно видно, что в число 35 входит 4 раза число 8.
  • Запишите под числом 35 число 32.
  • Ребенку нужно от 35 вычесть 32. Получится 3. Число 3 является остатком.
Деление с остатком

Деление с остатком

вернуться к меню ↑

Простые примеры для ребенка

На этом же примере можно продолжить:

  • При делении 35 на 8 получается остаток 3. К остатку нужно дописать 0. При этом после цифры 4 в столбике нужно поставить запятую. Теперь результат будет дробным.
  • При делении 30 на 8 получается 3. Эту цифру нужно записать после запятой.
  • Теперь нужно под значением 30 написать 24 (результат умножения 8 на 3). В итоге получится 6. К цифре 6 тоже нужно дописать ноль. Получится 60.
  • В число 60 помещается цифра 8 входит 7 раз. То есть, получится 56.
  • При вычитании 60 от 56 получается 4. К этой цифре тоже нужно подписать 0. Получается 40. В таблице умножения ребенок может увидеть, что 40 – это результат умножения 8 на 5. То есть, в число 40 цифра 8 входит 5 раз. Остатка нет. Ответ выглядит так – 4,375.

Данный пример может показаться ребенку сложным. Поэтому нужно много раз делить значения, у которых будет остаток.

вернуться к меню ↑

Обучение делению с помощью игр

Родители могут использовать игры на деление для обучения школьника. Можно дать ребенку раскраски, в которых нужно определить цвет карандаша путем деления. Нужно выбирать раскраски с легкими примерами, чтобы ребенок мог решить примеры в уме.

Картинка будет поделена на части, в которых будут результаты деления. А цвета, которые нужно использовать, будут примерами. Например, красный цвет помечен примером: 15 разделить на 3. Получится 5. Нужно найти часть картинки под этим номером и раскрасить ее. Математические раскраски увлекают детей. Поэтому родителям стоит попробовать данный способ обучения.

Веселый способ изучить деление чисел

Веселый способ изучить деление чисел

вернуться к меню ↑

Обучение делению столбиком наименьшего числа на наибольшее

Деление данным методом предполагает, что частное будет начинаться с 0, а после него будет стоять запятая. Чтобы ученик корректно усвоил полученную информацию, ему необходимо привести такого плана пример:

  • Дайте ребенку пример: 1 разделить на 8.
  • Подскажите, что ребенку нужно поставить 0 в частное, а после запятую.
  • Теперь можно приступать к обычному делению.
  • По итогу решения должен получиться такой ответ: 0,125.
вернуться к меню ↑

Обучение делению столбиком десятичных дробей с запятой

Деление десятичных дробей может запутать ребенка из-за постановки запятой.

Деление десятичных дробей

Деление десятичных дробей

Чтобы ребенок сориентировался в этом математическом действие, ему необходимо разложить информацию «по полочкам»:

  • Десятичная дробь допускает деление не только на десятичную дробь, но и на целое значение. В таких задачах необходимо действовать, как с обычными примерами. Только когда у делимого закончатся значения до запятой, ее нужно поставить в частное. Далее деление тоже протекает привычным способом.
  • Десятичные дроби так же делятся на десятичные дроби. В этом математическом действии нужно убрать запятые у второго числа. Для этого требуется перенести ее вправо в обоих значениях на то количество цифр, которое отделено у делителя.
вернуться к меню ↑

Обучение делению чисел столбиком с нолями

Деление чисел с нолями идентично обычному делению. Родителям нужно объяснить ребенку основные нюансы:

  • Расскажите, что если в конце делимого и делителя есть ноли, то их можно зачеркивать в уме. Предложите школьнику зачеркивать их простым карандашом для понимания. Дальше нужно делить, как и в обычных примерах. Например, если 1200 нужно разделить на 400, то ребенок может сократить пример, убрав два 0 у обоих чисел. А в примере деления 15600 на 560 можно сократить только по одному 0.
  • Объясните ученику, что если 0 есть только в делителе, то его нельзя сокращать.

Чтобы лучше усваивать материал, можно решить простой пример деления:

  • Запишите в тетради пример: 100 разделить на 10. Это легкий пример, так как при сокращении нолей он представлен так: 10 разделить на 1.
  • Ребенку следует под делителем написать цифру 10. Так как при умножении 1 на 10 получается требуемый результат. Под делимым ребенку нужно записать 10. Остатка у этого примера нет.

Предложите ребенку легкие примеры такого типа:

  • 200 разделить на 20;
  • 300 разделить на 30;
  • 400 разделить на 40;
  • 500 разделить на 50;
  • 600 разделить на 60;
  • 700 разделить на 70.

Далее можно переходить к сложным примерам. Но только после того, как ребенок усвоит результат.

вернуться к меню ↑
ВИДЕО: Почему нельзя делить на ноль
вернуться к меню ↑

Обучение делению столбиком в уме

Родители могут помочь ребенку научиться делить в уме. Это может пригодиться им не только в школе, но и в дальнейшей жизни. В уме дети считают тоже столбиком. Это удобно и знакомо. У детей развито воображение, поэтому они смогут быстро освоить технику. Приступать к обучению деления столбиком в уме нужно тогда, когда ребенок без труда справляется с делением в тетради. Обучение:

  • Расскажите школьнику о том, что делить столбиком можно не только в тетради, но и в уме.
  • Объясните ученику о том, что частное можно разложить на составляющие.
  • Значение 3647необходимо поделить на 7. Нужно показать частное как сумму чисел 3500 и 147. Значение 3500 самое оптимальное, так как его можно поделить на 7, не имея остатка. В результате деления 3500 на 7 получается 500, а при делении 147 на 7 получается 21. Числа 500 и 21 нужно сложить, в результате получится 521. Данное число является ответом в примере деления 3647 на 7.

Ребенок не сразу может освоить эту технику деления. Все зависит от родителей. Их задача заключается в помощи ребенку без давления.

вернуться к меню ↑
ВИДЕО: Как научиться делить в уме
вернуться к меню ↑

Обучение делению многочленов

В 5-6 классе у детей появляется новое сложное математической действие. Деление многочленов.

Деление многочленов

Деление многочленов

Детям нужно рассказать тонкости деления данного формата:

  • По итогу деления может быть остаток, так же он может отсутствовать.
  • Чтобы совершать вычитание, нужно дополнять в многочлен недостающей степенью функции, умноженной на 0.
  • Делайте преобразование многочлена с помощью выделения повторяющихся многочленов или двучленов. При сокращении получится ответ без остатка.

Рекомендации для легкого обучения ребенка

Чтобы ребенок быстро осваивал новый математический материал, его необходимо заранее подготовить. Важно научить трехлетнего ребенка понятиям «целое» и «часть». Ребенка важно научить восприятию целого, как неразделимого и частей целого, как самостоятельного объекта.

Также важно пробудить интерес к предмету у ребенка. Этому способствуют аналоги математических игр в процессе игры. Наблюдение за природой тоже можно преобразовать в увлекательную математику.

Родителям нужно тренировать наблюдательность детей. Это ключ к пониманию математики и других предметов.

Можно обзавестись полезными таблицами умножения и деления. Плакаты можно повесить в комнате ребенка. Тогда он может в любой момент ими воспользоваться и справиться с задачами.

вернуться к меню ↑
ВИДЕО: Деление в столбик

slovami.net

Пример деления числа на число. Таблица деления

Несмотря на то что математика кажется большинству людей наукой сложной, это далеко не так. Многие математические операции довольно легко понять, особенно если знать правила и формулы. Так, зная таблицу умножения, можно быстро перемножать в уме большие числа. Главное – постоянно тренироваться и не забывать правил умножения. То же самое можно сказать и о делении.

Давайте же разберем деление целых чисел, дробных и отрицательных. Вспомним об основных правилах, приемах и методах.

пример деления числа на число

Операция деления

Начнем, пожалуй, с самого определения и названия чисел, которые участвуют в данной операции. Это значительно облегчит дальнейшее изложение и восприятие информации.

Деление - одна из четырех основных математических операций. Изучение ее начинается еще в начальной школе. Именно тогда детям показывают первый пример деления числа на число, объясняют правила.

таблица деления

В операции участвуют два числа: делимое и делитель. Первое – число, которое делят, второе – на которое делят. Результатом деления является частное.

Имеется несколько обозначений для записи данной операции: «:», «/» и горизонтальная черта - запись в виде дроби, когда вверху находится делимое, а внизу, под чертой – делитель.

Правила

При изучении той или иной математической операции учитель обязан познакомить учеников с основными правилами, которые следует знать. Правда, не всегда они запоминаются так хорошо, как хотелось бы. Именно поэтому мы решили немного освежить в вашей памяти четыре фундаментальных правила.

Основные правила деления чисел, которые стоит помнить всегда:

1. Делить на ноль нельзя. Это правило следует запомнить в первую очередь.

2. Делить ноль можно на любое число, но в итоге всегда будет ноль.

3. Если число поделить на единицу, мы получим то же число.

4. Если число разделить на само себя, мы получим единицу.

Как видите, правила довольно простые и легко запоминаются. Хотя некоторые и могут забывать такое простое правило, как невозможность деления на ноль, или же путать с ним деление ноля на число.

Одно из наиболее полезных правил - признак, по которому определяется возможность деления натурального числа на другое без остатка. Так, выделяют признаки делимости на 2, 3, 5, 6, 9, 10. Рассмотрим их подробнее. Они существенно облегчают выполнение операций над числами. Также приведем для каждого правила пример деления числа на число.

деление чисел

Данные правила-признаки довольно широко используются математиками.

Признак делимости на 2

Наиболее простой для запоминания признак. Число, которое оканчивается на четную цифру (2, 4, 6, 8) или 0, всегда делится на два нацело. Довольно просто для запоминания и использования. Так, число 236 оканчивается на четную цифру, а значит, делится на два нацело.

Проверим: 236:2 = 118. Действительно, 236 делится на 2 без остатка.

Данное правило наиболее известно не только взрослым, но и детям.

Признак делимости на 3

Как правильно выполнить деление чисел на 3? Запомнить следующее правило.

Число делится на 3 нацело в том случае, если сумма его цифр кратна трем. Для примера возьмем число 381. Сумма всех цифр будет составлять 12. Данное число кратно трем, а значит делится на 3 без остатка.

Также проверим данный пример. 381 : 3 = 127, значит все верно.

деление на однозначное число примеры

Признак делимости чисел на 5

Тут также все просто. Разделить на 5 без остатка можно лишь те числа, которые оканчиваются на 5 либо же на 0. Для примера возьмем такие числа, как 705 или же 800. Первое заканчивается на 5, второе - на ноль, следовательно они оба делятся на 5. Это одно из простейших правил, которое позволяет быстро осуществлять деление на однозначное число 5.

Проверим данный признак на таких примерах: 405:5 = 81; 600:5 = 120. Как видите, признак действует.

Делимость на 6

Если вы хотите узнать, делится ли число на 6, то вам сначала нужно выяснить, делится ли оно на 2, а затем - на 3. Если да, то число можно без остатка разделить на 6. К примеру, число 216 делится и на 2, так как заканчивается на четную цифру, и на 3, так как сумма цифр равна 9.

Проверим: 216:6 = 36. Пример показывает, что данный признак действует.

Делимость на 9

Поговорим также и о том, как осуществить деление чисел на 9. На данное число делятся те натуральные числа, сумма цифр которых кратна 9. Аналогично правилу деления на 3. Например, число 918. Сложим все цифры и получим 18 - число, кратное 9. Значит, оно делится на 9 без остатка.

Решим данный пример для проверки: 918:9 = 102.

Делимость на 10

деление целых чисел

Последний признак, который стоит знать. На 10 делятся только те числа, которые оканчиваются на 0. Данную закономерность довольно просто и легко запомнить. Так, 500:10 = 50.

Вот и все основные признаки. Запомнив их, вы сможете облегчить себе жизнь. Конечно, есть и другие числа, для которых существуют признаки делимости, но мы с вами выделили лишь основные из них.

Таблица деления

В математике существует не только таблица умножения, но и таблица деления. Выучив ее, можно с легкостью выполнять операции. По сути, таблица деления представляет собой таблицу умножения наоборот. Составить ее самостоятельно не представляет труда. Для этого следует переписать каждую строку из таблицы умножения таким образом:

1. Ставим произведение числа на первое место.

2. Ставим знак деления и записываем второй множитель из таблицы.

3. После знака равенства записываем первый множитель.

Например, возьмем следующую строку из таблицы умножения: 2*3= 6. Теперь перепишим ее согласно алгоритму и получим: 6 ÷ 3 = 2.

Довольно часто детей просят самостоятельно составить таблицу, таким образом развивая их память и внимание.

Если же у вас нет времени на ее написание, то можете воспользоваться представленной в статье.

правила деления чисел

Виды деления

Поговорим немного о видах деления.

Начнем с того, что можно выделить деление целых чисел и дробных. При этом в первом случае можно говорить об операциях с целыми числами и десятичными дробями, а во втором – только о дробных числах. При этом дробным может являться как делимое или делитель, так и оба одновременно. Это разделение связано с тем, что операции над дробями отличаются от операций с целыми числами.

Далее мы поговорим о делении дробей подробнее.

Исходя из чисел, которые участвуют в операции, можно выделить два вида деления: на однозначные числа и на многозначные. Наиболее простым считается деление на однозначное число. Здесь вам не нужно будет проводить громоздкие вычисления. К тому же хорошо может помочь таблица деления. Делить же на другие - двух-, трехзначные числа - тяжелее.

Рассмотрим примеры для данных видов деления:

14:7 = 2 (деление на однозначное число).

240:12 = 20 (деление на двузначное число).

45387: 123 = 369 (деление на трехзначное число).

Последним можно выделить деление, в котором участвуют положительные и отрицательные числа. При работе с последними следует знать правила, по которым происходит присвоение результату положительного или отрицательного значения.

При делении чисел с разными знаками (делимое - число положительное, делитель - отрицательное, или наоборот) мы получаем отрицательное число. При делении чисел с одним знаком (и делимое, и делитель - положительные или же наоборот) - получаем число положительное.

Рассмотрим для наглядности следующие примеры:

21:(-7)= -3

-36:6= (-6)

-48: (-8)= 6.

Деление дробей

Итак, мы с вами разобрали основные правила, привели пример деления числа на число, теперь поговорим о том, как правильно выполнять эти же операции с дробями.

деление на однозначное число

Несмотря на то что деление дробей поначалу кажется довольно тяжелым делом, в действительности работать с ними не так уж и трудно. Деление дроби выполняется практически так же, как и умножение, но с одним отличием.

Для того чтобы разделить дробь, следует сначала умножить числитель делимого на знаменатель делителя и зафиксировать полученный результат в виде числителя частного. Затем умножить знаменатель делимого на числитель делителя и записать результат как знаменатель частного.

Можно сделать и проще. Переписать дробь делителя, поменяв местами числитель со знаменателем, а затем перемножить полученные числа.

Например, разделим две дроби: 4/5:3/9. Для начала перевернем делитель, получим 9/3. Теперь перемножим дроби: 4/5 * 9/3 = 36/15.

Как видите, все довольно легко и не сложнее, чем деление на однозначное число. Примеры на действия с дробями решаются просто, если не забывать данное правило.

Выводы

Деление - одна из математических операций, которые каждый ребенок изучает еще в начальной школе. Есть определенные правила, которые следует знать, приемы, облегчающие выполнение данной операции. Деление бывает с остатком и без, бывает деление отрицательных и дробных чисел.

Запомнить особенности данной математической операции довольно легко. Мы с вами разобрали наиболее важные моменты, рассмотрели не один пример деления числа на число, даже поговорили о том, как работать с дробными числами.

Если вы хотите улучшить свое знание математики, советуем вам запомнить эти несложные правила. Кроме того, можем посоветовать вам развивать память и навыки счета в уме, выполняя математические диктанты или просто пытаясь высчитать устно частное двух случайных чисел. Поверьте, эти навыки никогда не будут лишними.

fb.ru

Деление столбиком

Метод деления столбиком, позволяет упростить деления чисел.

Рассмотрим как делить в столбик на примере нахождения частного двух чисел 6344 ÷ 61.

  • 1 Запишем числа которые будем делить следующим образом: . Слева расположено делимое 6344, справа от черты делитель 61, ниже делителя будем записывать частное.
  • 2 Найдем первую цифру частного, для этого сравниваем делитель 61 с числом состоящим из первый цифр делимого, пока не сформируем число большее или равное делителю. На первом шаге: 6 1 и ниже черты остаток от деления 2=63-61.

  • 3 Добавляем следующую не использованную цифру равную 4 из делимого к 2, получаем 24 0.

  • 4 Добавляем следующую не использованную цифру равную 4 из делимого к 24, получаем 244 > 61, следовательно мы нашли третью цифру частного; записываем в частное 4=244 ÷ 61. Мы использовали все цифры и получили что число 61 делит на цело число 6344 а частное равно 104.

Ниже обозначены основные термины:

Пример Разделить столбиком число 558 на 18.

calcs.su

Как легко объяснить ребенку деление | WomenLand

Важно, чтобы ребенок понимал суть такого математического действия, как деление. Для этого необходимо ему объяснить, что деление представляет собой разделение чего-либо на равные доли. Рекомендуется превратить процесс обучения в интересную игру, чтобы ребенок был сконцентрирован. =

Деление в игровой форме

Как легко объяснить ребенку деление

СОВЕТ: Таблицу деления так же важно выучить, как и таблицу умножения. Лучше это делать на каникулах!

Помогите ребенку понять, что деление — это обратное действие умножению.

Секреты деления

Самым простым способом объяснить деление является проведение наглядной демонстрации разделения предметов на равные доли. В качестве делимых предметов можно использовать все, что угодно, но желательно что-то интересное для ребенка. В качестве примера можно воспользоваться конфетами и игрушками.

Как объяснить ребенку деление при помощи игрушек?

Изначально нужно взять 2 конфеты и попросить ребенка разделить их между 2 плюшевыми игрушками. Благодаря такому простому примеру ребенок поймет суть математического деления. После этого можно переходить к более сложным примерам деления.

Как происходит деление, подробно и в игровой форме показывается в следующем видео:

Также вы можете взять коробку цветных карандашей, которая будет выступать одним целым, и предложить малышу разделить их между собой и вами поровну. После, попросите ребенка посчитать, сколько карандашей было вначале в коробке и сколько он смог раздать.

Домашнее обучение делению

По мере понимания ребенка, родитель может увеличивать число предметов и количество участников задачи. Затем нужно рассказать, что не всегда получается разделить что-либо поровну и некоторые предметы иногда остаются «ничейными». К примеру, можно предложить разделить 9 яблок между бабушкой, дедушкой, папой и мамой. Ребенок должен понять, что все получат лишь по 2 яблока, а одно окажется в остатке.

Домашнее обучение делению

Таким образом, вы объясните азы деления и подготовите ребенка к более сложным школьным задачам.

СОВЕТ: Старайтесь заниматься со своим ребенком в игровой форме. Тогда ему будет интересно заниматься, а значит, занятия пройдут весело и без особых усилий.

Также вам будет интересно и полезно распечатать таблицу деления в виде картинки.

Таблица деления

Деление с помощью таблицы умножения

Деление с помощью таблицы умножения

Делить однозначные числа на однозначные проще всего с использованием таблицы умножения. Для этого достаточно объяснить ребенку, что деление является действием обратным к умножению. Сделать это можно на любом правильном примере деления натуральных чисел.

Например: 2 умножить на 3 будет 6. Основываясь на данном примере продемонстрировать ребенку процесс деления. Следует действовать следующим образом: разделить 6 на любой множитель, например, на число 2. В ответе получится 3, то есть множитель неиспользованный при делении.

Пример деления

Таким способом можно делить многозначные (двухзначные) числа на однозначные.

Алгоритм деления в столбик

Прежде, чем начать объяснение деления в столбик, нужно рассказать ребенку о значении делимого, делителя и частного. В примере 20:4=5, 20 является делимым, 4 делителем, а 5 частным. У каждой отдельной цифры в примере одно наименование.

Многозначные числа (трехзначные и двухзначные) проще всего делить в столбик. Для этого нужно записать многозначные числа уголком.

Деление с помощью таблицы умножения

Например, нужно разделить трехзначное число 369 на однозначное число 3.

Деление с помощью таблицы умножения

В качестве делителя записано трехзначное число 369, а в качестве делителя однозначное число 3. Первым делом важно объяснить ребенку, что деление в столбик происходит в несколько этапов:

  • Определение части делимого подходящего для первичного деления. В данном случае цифра 3. 3:3=1. Цифру 1 нужно записать в графу частное.
  • «Спустить» следующее делимое число. В данном случае это цифра 6. 6:3=2. Полученное число 2 нужно записать в частное.
  • Далее необходимо «спустить» следующее делимое число 9. 9 делится без остатка на 3, полученный результат необходимо записать в частное. Результатом деления трехзначного числа 369 на 3 получается 123.

Деление десятичного числа на двухзначное проходит примерно так же. В случае с десятичным числом необходимо объяснить ребенку, что запятую в делителе переносят на столько знаков, на сколько перенесли в делимом. Далее следует обычное деление в столбик.

Деление с остатком

Необходимо предупредить ребенка о встречающихся случаях деления с остатком. В качестве примера можно поделить двухзначное число 26 на 5 столбиком. В результате остается остаток 1.

Деление с остатком

Важно после объяснения позволить ребенку самостоятельно решить несколько примеров, чтобы весь изученный материал надолго остался в памяти ребенка.

А еще Вы можете посмотреть видео, где все объясняют понятным языком.

И напоследок, не приучайте себя и ребенка пользоваться онлайн калькулятором, чтоб узнать, как  разделить 145 на 9, 34 на 40, 100 на 4, 30 на 80, 416 на 52 и другие примеры. Это не принесет пользы не вам, ни ему.

В 1-ый класс идет не только ребенок – родители вместе с ним начинают и вместе с ним заканчивают образовательное учреждение. Учитель в школе не всегда успевает объяснить каждому отдельному ученику ту или иную дисциплину. Поэтому у домашнего образования — свои плюсы. Вы можете сами объяснить ребенку, индивидуально и не спеша то, что он не понял. В этот непростой период, главное — это набраться терпения и не ругать школьника из-за неправильных решений. Тогда все у вас получится.

Это будет интересно:

women-land.ru