5.3.5. Нахождение наименьшего общего кратного (НОК) данных чисел. Найдите наименьший общее кратное


НОК. Наименьшее общее кратное чисел.

  •  Наименьшим общим кратным данных натуральных чисел называют наименьшее натуральное число, кратное каждому из данных чисел. Пример. НОК(24, 42)=168. Это самое маленькое число, которое делится и на 24 и на 42.
  •  Для нахождения НОК нескольких данных натуральных чисел надо: 1) разложить каждое из данных чисел на простые множители; 2) выписать разложение большего из чисел и умножить его на недостающие множители из разложений других чисел.
  •  Наименьшее кратное двух взаимно простых чисел равно произведению этих чисел.

Пример 1. Найти НОК(35; 40).

Разложим числа 35 и 40 на простые множители.

35=5∙7,   40=2∙2∙2∙5 или 40=23∙5

Берем разложение большего числа 40 и дополняем его недостающими         множителями.  НОК(35; 40)=23∙5∙7=40∙7=280.

Ответ: НОК(35; 40)=280.

 

Пример 2. Найти НОК(45; 54).

Раскладываем числа 45 и 54 на простые множители.

45=32∙5,  54=2∙33.

Берем разложение числа 54 и умножаем на недостающие множители из разложения числа 45, т. е. на число 5.

НОК(45; 54)=2∙33∙5=54∙5=270.

Ответ: НОК(45; 54)=270.

 

Пример 3. Найти НОК(75; 120; 150).

Разложим числа 75, 120 и 150 на простые множители.

75=3∙52,    120=23∙3∙5,  150=2∙3∙52

Возьмем разложение большего числа 150 и дополним его двумя «двойками», так как в разложении числа 120 имеется три «двойки», а в разложении числа 150 – только одна.

НОК(75; 120; 150)=2∙3∙52∙2∙2=150∙4=600.

Ответ: НОК(75; 120; 150)=600.

Вывод: при нахождении НОК выписывают произведение всех простых (различных) множителей, имеющихся в разложениях этих чисел, причем, каждый из множителей берется с наибольшим из имеющихся показателей степеней.

 

Запись имеет метки: НОК

www.mathematics-repetition.com

Наименьшее общее кратное трех чисел. Как найти наименьшее общее кратное трех чисел? Найдите наименьшее общее кратное чисел 168, 231 и 60

Наименьшее общее кратное трех чисел

Как найти наименьшее общее кратное трех чисел?

Примерно так, как находят наименьшее общее кратное двух чисел.

Наименьшее общее кратное трех чисел пример.

Найдите наименьшее общее кратное чисел 168, 231 и 60

Найти нок чисел 168, 231 и 60.

Как найти наименьшее общее кратное трех чисел 168, 231 и 60?

Сначала нужно разложить эти три числа на простые множители.

Разложить на простые множители число 231:

231  3
 77  7
 11  11
  1 

Разложение на простые множители числа 231:

231 = 3 * 7 * 11

Разложить на простые множители число 168:

168  3
 56  7
  8  2
  4  2
  2  2
  1 

Разложение на простые множители числа 168:

168 = 2 * 2 * 2 * 3 * 7

Разложить на простые множители число 60:

60  3
20  2
10  5
 2  2
 1 

Разложение на простые множители числа 60:

60 = 2 * 2 * 3 * 5

Теперь берем разложение на простые множители числа 231:

3 * 7 * 11

и добавляем в него множители из разложений чисел 168 и 60, но только такие множители, которых нет в разложении 231.

Из разложения числа 168 добавим множители 2, 2, 2:

2 * 2 * 2 * 3 * 7 * 11

Из разложения числа 60 добавим множитель 5:

2 * 2 * 2 * 3 * 5 * 7 * 11

Полученное произведение и есть наименьшее общее кратное чисел 168, 231 и 60:

2 * 2 * 2 * 3 * 5 * 7 * 11 = 9240

Ответ: нок чисел 168, 231 и 60 равен 9240:

НОК(231, 168, 60) = 9240

www.sbp-program.ru

определение, как найти, общая схема

 

Рассмотрим решение следующей задачи. Шаг мальчика составляет 75 см, а шаг девочки 60 см. Необходимо найти наименьшее расстояние, на котором они оба сделают по целому числу шагов.

Решение. Весь путь который пройдут ребята, должен делиться без остатка на 60 и на 70, так как они должны сделать каждый целое число шагов. Другими словами, в ответе должно быть число, кратное как 75 так и 60.

Сначала будем выписывать все кратные числа, для числа 75. Получаем:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675,  … .

Теперь выпишем числа, которые будут кратны 60. Получаем:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

Теперь находим числа которые есть в обоих рядах.

  • Общими кратными чисел будут числа, 300, 600,  и т.д.

Самое наименьшее из них, это число 300. Оно в данном случае будет называться наименьшим общим кратным чисел 75 и 60.

Возвращаясь к условию задачи, наименьшее расстояние, на котором ребята сделают целое число шагов будет 300 см. Мальчик пройдет этот путь за 4 шага, а девочке потребуется сделать 5 шагов.

Определение наименьшего общего кратного

  • Наименьшим общим кратным двух натуральных чисел a и b называется наименьшее натуральное число, которое кратно как a, так и b.

Для того, чтобы найти наименьшее общее кратное двух чисел, не обязательно выписывть подряд все кратные для этих чисел. 

Можно воспользоваться следующим методом.

Как найти наименьшее общее кратное

Сначала необходимо разложить данные числа на простые множители.

Теперь выпишем все множители которые есть в разложении первого числа (2,2,3,5) и добавим к нему все недостающие множители из разложения второго числа (5).

Получим в итоге ряд простых чисел: 2,2,3,5,5. Произведение этих чисел и будет наименьшим общим сомножителем для данных чисел. 2*2*3*5*5 = 300. 

Общая схема нахождения наименьшего общего кратного

  • 1. Разложить числа на простые множители.
  • 2. Выписать простые множители которые входят в состав одного из них.
  • 3. Добавить к этим множителям все те, которые есть в разложении остальных, но нет в выбранном.
  • 4. Найти произведение всех выписанных сомножителей.

Данный способ универсален. С его помощью можно найти наименьшее общее кратное любого количества натуральных чисел. 

Нужна помощь в учебе?

Предыдущая тема: Наибольший общий делитель (НОД): определение, как найти, схема Следующая тема:&nbsp&nbsp&nbspЧисловые выражения: примеры, значение, числовое равенство, правила

Все неприличные комментарии будут удаляться.

www.nado5.ru

НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ, алгоритм как найти НОК

Наименьшее общее кратное чисел – это наименьшее число, которое делится на все заданные числа.

Алгоритм поиска НОК

Вычисление НОК похоже на поиск НОД. Чтобы найти наименьшее общее кратное, нужно использовать следующий алгоритм:

  1. Разложить все числа на простые множители, используя признаки делимости чисел.
  2. Найти совпадающие множители во всех числах и выписать их.
  3. Выписать все несовпадающие множители.
  4. Перемножить все выписанные множители.

Если среди множителей чисел не были найдены одинаковые, НОК числа находится перемножением этих чисел.

Примеры поиска наименьшего общего кратного

Рассмотрим, как найти НОК с помощью алгоритма на нескольких примерах.

Пример 1:

Найдите наименьшее общее кратное чисел 420 и 990.

Решение:

Разложим оба числа на простые множители:

Получили, что:

420 = 2 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 7

990 = 2 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 11

Выпишем все совпадающие множители:

Выпишем все несовпадающие множители:

2, 7 – из первого числа

3, 11 – из второго числа

Перемножим полученные множители:

2 ⋅ 3 ⋅ 5 ⋅ 2 ⋅ 7 ⋅ 3 ⋅ 11 = 13860

Ответ: 13860

Пример 2

Найдите наименьшее общее кратное чисел 96 и 378.

Решение:

Разложим оба числа на простые множители:

Получили, что:

96 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3

378 = 2 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 7

Выпишем все совпадающие множители:

Выпишем все несовпадающие множители:

2, 2, 2, 2 – из первого числа

3, 3, 7 – из второго числа

Перемножим полученные множители:

НОК = 2 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 7 = 6048

Ответ: 6048

Пример 3:

Найдите наименьшее общее кратное чисел 330 и 343.

Решение:

Разложим оба числа на простые множители:

Получили, что:

330 = 2 ⋅ 3 ⋅ 5 ⋅ 11

343 = 7 ⋅ 7 ⋅ 7

Совпадающих множителей у этих 2 чисел нет, поэтому для получения НОК будет достаточно перемножить исходные числа:

НОК = 330 ⋅ 343 = 113190

Ответ: 113190

worksbase.ru

Наименьшее общее кратное

Определение. Наименьшее общее кратное (НОК) двух натуральных чисел — это наименьшее натуральное число, которое делится на эти числа без остатка.

НОК всегда натуральное число, которое должно быть больше самого большого из чисел, для которых оно определяется.

  • Правило. Чтобы найти НОК ряда чисел, нужно:
  • — разложить числа на простые множители;
  • — перенести во множители искомого произведения самое большое разложение (произведение множителей самого большого числа из заданных), а потом добавить множители из разложения других чисел, которые не встречаются в первом числе или стоят в нем меньшее число раз;
  • — полученное произведение простых множителей будет НОК заданных чисел.

Любые два и более натуральных чисел имеют свое НОК. Если числа не кратны друг другу или не имеют одинаковых множителей в разложении, то их НОК равно произведению этих чисел.

Простые множители числа 28 (2, 2, 7) дополнили множителем 3 (числа 21), полученное произведение (84)будет наименьшим числом, которое делится на 21 и 28 .

Простые множители наибольшего числа 30 дополнили множителем 5 числа 25, полученное произведение 150 больше самого большого числа 30 и делится на все заданные числа без остатка. Это наименьшее произведение из возможных (150, 250, 300...), которому кратны все заданные числа.

Числа 2,3,11,37 — простые, поэтому их НОК равно произведению заданных чисел.

Правило. Чтобы вычислить НОК простых чисел, нужно все эти числа перемножить между собой.

Запись опубликована в рубрике Математика с метками кратное. Добавьте в закладки постоянную ссылку.

shkolo.ru

Наименьшее общее кратное 3 чисел. Как найти наименьшее общее кратное 3 чисел? Найдите наименьшее общее кратное чисел 34, 51 и 68

Наименьшее общее кратное 3 чисел

Как найти наименьшее общее кратное 3 чисел?

Наименьшее общее кратное 3 чисел находится подобно тому, как находят наименьшее общее кратное 2 чисел.

Как находить наименьшее общее кратное 3 чисел рассмотрим на примере.

Наименьшее общее кратное чисел 34, 51, 68

Чтоб найти наименьшее общее кратное 3 чисел нужно разложить их на простые множители.

Разложить на простые множители число 68:

68  2
34  2
17  17
 1 

Разложение на простые множители числа 68:

68 = 2 * 2 * 17

Разложить на простые множители число 51:

Разложение на простые множители числа 51:

51 = 3 * 17

Разложить на простые множители число 34:

Разложение на простые множители числа 34:

34 = 2 * 17

Самым большим из наших 3 числе является число 68. Берем его разложение на простые множители:

2 * 2 * 17

и добавим в него множители из разложения числа 51 такие, которых нет в разложении числа 68. Это множитель 3:

2 * 2 * 3 * 17

Добавим в полученное произведение множители из разложения числа 34 такие, которых нет в полученном произведении. Таких множителей нет, поэтому ничего не добавляем.

Полученное произведение равно 204:

2 * 2 * 3 * 17 = 204

Число 204 есть наименьшее общее кратное чисел 34, 51, 68.

Ответ: нок чисел 34, 51, 68 равен 204:

НОК(68, 51, 34) = 204

www.sbp-program.ru

НОД и НОК чисел с решением | Наибольший общий делитель и наименьшее общее кратное нескольких чисел

Онлайн калькулятор позволяет быстро находить наибольший общий делитель и наименьшее общее кратное как для двух, так и для любого другого количества чисел.

Калькулятор для нахождения НОД и НОК

Найти НОД и НОК

Найдено НОД и НОК: 1203

Как пользоваться калькулятором

  • Введите числа в поле для ввода
  • В случае ввода некорректных символов поле для ввода будет подсвечено красным
  • нажмите кнопку "Найти НОД и НОК"

Как вводить числа

  • Числа вводятся через пробел, точку или запятую
  • Длина вводимых чисел не ограничена, так что найти НОД и НОК длинных чисел не составит никакого труда

Что такое НОД и НОК?

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое все исходные числа делятся без остатка. Наибольший общий делитель сокращённо записывается как НОД.Наименьшее общее кратное нескольких чисел – это наименьшее число, которое делится на каждое из исходных чисел без остатка. Наименьшее общее кратное сокращённо записывается как НОК.

Как проверить, что число делится на другое число без остатка?

Чтобы узнать, делится ли одно число на другое без остатка, можно воспользоваться некоторыми свойствами делимости чисел. Тогда, комбинируя их, можно проверять делимость на некоторые их них и их комбинации.

Некоторые признаки делимости чисел

1. Признак делимости числа на 2Чтобы определить, делится ли число на два (является ли оно чётным), достаточно посмотреть на последнююю цифру этого числа: если она равна 0, 2, 4, 6 или 8, то число чётно, а значит делится на 2.Пример: определить, делится ли на 2 число 34938.Решение: смотрим на последнюю цифру: 8 - значит число делится на два.

2. Признак делимости числа на 3Число делится на 3 тогда, когда сумма его цифр делится на три. Таким образом, чтобы определить, делится ли число на 3, нужно посчитать сумму цифр и проверить, делится ли она на 3. Даже если сумма цифр получилась очень большой, можно повторить этот же процесс вновь.Пример: определить, делится ли число 34938 на 3.Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 3, а значит и число делится на три.

3. Признак делимости числа на 5Число делится на 5 тогда, когда его последняя цифра равна нулю или пяти.Пример: определить, делится ли число 34938 на 5.Решение: смотрим на последнюю цифру: 8 - значит число НЕ делится на пять.

4. Признак делимости числа на 9Этот признак очень похож на признак делимости на тройку: число делится на 9 тогда, когда сумма его цифр делится на 9.Пример: определить, делится ли число 34938 на 9.Решение: считаем сумму цифр: 3+4+9+3+8 = 27. 27 делится на 9, а значит и число делится на девять.

Как найти НОД и НОК двух чисел

Как найти НОД двух чисел

Наиболее простым способом вычисления наибольшего общего делителя двух чисел является поиск всех возможных делителей этих чисел и выбор наибольшего из них.

Рассмотрим этот способ на примере нахождения НОД(28, 36):

  1. Раскладываем оба числа на множители: 28 = 1·2·2·7, 36 = 1·2·2·3·3
  2. Находим общие множители, то есть те, которые есть у обоих чисел: 1, 2 и 2.
  3. Вычисляем произведение этих множителей: 1·2·2 = 4 - это и есть наибольший общий делитель чисел 28 и 36.

Как найти НОК двух чисел

Наиболее распространены два способа нахождения наименьшего кратного двух чисел. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди них такое число, которое будет общим для обоих чисел и при этом наименьшем. А второй заключается в нахождении НОД этих чисел. Рассмотрим только его.

Для вычисления НОК нужно вычислить произведение исходных чисел и затем разделить его на предварительно найденный НОД. Найдём НОК для тех же чисел 28 и 36:

  1. Находим произведение чисел 28 и 36: 28·36 = 1008
  2. НОД(28, 36), как уже известно, равен 4
  3. НОК(28, 36) = 1008 / 4 = 252.

Нахождение НОД и НОК для нескольких чисел

Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел. Также для нахождение НОД нескольких чисел можно воспользоваться следующим соотношением: НОД(a, b, c) = НОД(НОД(a, b), c).

Аналогичное соотношение действует и для наименьшего общего кратного чисел: НОК(a, b, c) = НОК(НОК(a, b), c)

Пример: найти НОД и НОК для чисел 12, 32 и 36.

  1. Cперва разложим числа на множители: 12 = 1·2·2·3, 32 = 1·2·2·2·2·2, 36 = 1·2·2·3·3.
  2. Найдём обшие множители: 1, 2 и 2.
  3. Их произведение даст НОД: 1·2·2 = 4
  4. Найдём теперь НОК: для этого найдём сначала НОК(12, 32): 12·32 / 4 = 96.
  5. Чтобы найти НОК всех трёх чисел, нужно найти НОД(96, 36): 96 = 1·2·2·2·2·2·3, 36 = 1·2·2·3·3, НОД = 1·2·2·3 = 12.
  6. НОК(12, 32, 36) = 96·36 / 12 = 288.

programforyou.ru