Формула площади и радиуса: свойства треугольника, вписанного в окружность. Формула площади вписанного треугольника в окружность формула


как найти круг, вычисление площади и радиуса

Формула площади и радиуса: свойства треугольника, вписанного в окружность

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления,Но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра. Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Свойства треугольника вписанного в окружность

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла биссектрису, после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя углами?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

  1. Центр описанной окружности для прямоугольного треугольника находится на середине гипотенузы, у острого – внутри самого треугольника, а для тупоугольного – за ее пределами.
  2. Диаметр любой описанной окр-сти равен половине отношения стороны и синуса угла, который принадлежит ей, в виде формулы можно представить следующим образом:Свойства треугольника вписанного в окружность
  3. Зная радиус описанной окружности и значения углов, можно найти значение площади, не прибегая к использованию длин сторон, по следующей формуле:Свойства треугольника вписанного в окружность

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Свойства треугольника вписанного в окружность

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Свойства треугольника вписанного в окружность

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Свойства треугольника вписанного в окружность

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Свойства треугольника вписанного в окружность

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь;
  • градусная мера каждого угла;
  • длины сторон и периметр.

Свойства треугольника вписанного в окружность

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, высоты, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Свойства треугольника вписанного в окружность

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке. Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым натуральным числом, скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Формула площади и радиуса: свойства треугольника, вписанного в окружность

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

м

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Свойства треугольника вписанного в окружность

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Свойства треугольника вписанного в окружность

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Свойства треугольника вписанного в окружность

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

Свойства треугольника вписанного в окружность

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

Свойства треугольника вписанного в окружность

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Свойства треугольника вписанного в окружность

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника:

Свойства треугольника вписанного в окружность

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Свойства треугольника вписанного в окружность

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

Свойства треугольника вписанного в окружность

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

uchim.guru

Вписанный и описанный треугольник - материалы для подготовки к ЕГЭ по Математике

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

,

где — полупериметр,

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен a. Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

По теореме синусов,

Получаем, что . Угол B — тупой. Значит, он равен 150^{\circ}.

Ответ: 150.

3. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где h — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону AB пополам. По теореме Пифагора найдем h=32. Тогда R=25.

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания C4.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Площадь треугольника через радиус вписанной окружности

Как найти площадь треугольника через радиус вписанной окружности?

Площадь треугольника равна произведению радиуса вписанной в этот треугольник окружности на на его полупериметр.

ploschad treugolnika cherez radius vpisannoy okruzhnosti

Формула для нахождения площади треугольника через радиус вписанной окружности:

    \[S = pr,\]

    \[p = \frac{{a + b + c}}{2}\]

 

 

Дано:

∆ ABC,

окружность (O; r) — вписанная,

AB=c, BC=a, AC=b,

    \[p = \frac{{a + b + c}}{2}\]

Доказать:

    \[{S_{\Delta ABC}} = pr\]

Доказательство:

площадь треугольника через вписанную окружность

 

 

Рассмотрим треугольник AOC.

    \[OF \bot AC\]

(как радиус, проведенный в точку касания).

Следовательно, OF — высота треугольника AOC.

По формуле

    \[S = \frac{1}{2}a{h_a}\]

    \[{S_{\Delta AOC}} = \frac{1}{2}AC \cdot OF = \frac{1}{2}br.\]

ploschad treugolnika cherez

 

 

Аналогично найдем

площади

треугольников

AOB и BOC:

 

    \[{S_{\Delta AOB}} = \frac{1}{2}AB \cdot OD = \frac{1}{2}cr,\]

    \[{S_{\Delta BOC}} = \frac{1}{2}BC \cdot OK = \frac{1}{2}ar.\]

Так как площадь треугольника ABC равна сумме площадей этих треугольников, то

    \[{S_{\Delta ABC}} = {S_{\Delta AOC}} + {S_{\Delta AOB}} + {S_{\Delta BOC}} = \]

    \[ = \frac{1}{2}br + \frac{1}{2}cr+\frac{1}{2}ar = \frac{{a + b + c}}{2} \cdot r = pr.\]

Что и требовалось доказать.

Если требуется найти площадь треугольника через его периметр, формулу записывают так:

    \[S = \frac{1}{2}P \cdot r,\]

где P — периметр треугольника, r — радиус вписанной в этот треугольник окружности.

www.treugolniki.ru

Площадь треугольника через радиус вписанной окружности

треугольник и вписанная окружностьДовольно часто дается задача, в которой в треугольник вписана окружность. В этом случае можно применяется формула площади треугольника через радиус вписанной окружности.Чтобы найти площадь треугольника потребуются длины всех сторон и радиус окружности. Радиус – это половина диаметра. То есть, если по условиям дана длина диаметра, ее необходимо просто поделить пополам.Для начала просчитываем полупериметр треугольника. Он находится по фомуле: p={(a+b+c)/2}Зная полупериметр и длину радиуса, вычисляем площадь по формуле

S=p * r Иконка карандаша 24x24Пример расчета площади треугольника через радиус вписанной окружности: Дан треугольник со сторонами a = 2 см, b = 3 см, c = 4 см, в который вписана окружность с радиусом 2 см. Для начала находим полупериметр:p={(2+3+4)/2}=9/2=4.5 Далее подставляем данные в следующую формулу:S=4.5 * 2 = 9 Площадь треугольника равняется 9 кв.см Иногда требуется найти площадь треугольника, зная площадь окружности. В этом случае потребуется сначала вычислить радиус окружности. Площадь круга равняется:S=pi*r^2 где число Пи Внешняя ссылкаpi=3.14159 и является постоянной величиной. Отсюда выводим формулу расчета радиуса: r=sqrt{S/pi} Теперь можно использовать формулу площади треугольника через площадь вписанной окружности: S_TP=p * sqrt{S_OKP/pi} Иконка карандаша 24x24Рассмотрим пример расчета площади треугольника через площадь вписанной окружности. Дан треугольник со сторонами a = 2 см., b = 3 см., c = 4 см. Площадь вписанной окружности = 12,5 см. Подставляем данные в формулу:S_TP=4.5 * sqrt{12.5/3.14159}=4.5 * sqrt{4} = 4.5 * 2 = 9 Площадь треугольника равна 9 кв. см

Таким образом, зная площадь окружности и длины всех сторон, можно прочитать площадь треугольника.

2mb.ru

Формула площади правильного вписанного треугольника в окружность

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СТАТИКЕ. Пример 1. Горизонтальная балка и рама, длина которой равна l, у одного конца закреплена шарнирно, а у другого.. Зубчатые колеса передают на вал в точках C и D силы, направленные вертикально вниз: F1 = 400 H и F2 = 80 H. Определить опорные реакции.

Площадь равностороннего треугольника

Равносторонним, или правильным, называется треугольник, в котором все стороны одинаковой длины, а все три угла равны 60°.

Для нахождения площади равностороннего треугольника можно применять различные формулы.

1.Через сторону…

Учитывая, что все стороны равны и зная их длину, можно легко найти значение по формуле площади правильного треугольника:

Задача: дан равносторонний треугольник со стороной a= 5 см. Найдите площадь

Площадь треугольника будет равна 10,6 квадратных сантиметра

2.Через описанную окружность…

Можно найти значение Через радиус описанной окружности. Он может быть дан условиями или рассчитываться исходя из радиуса вписанной окружности по приведенной выше формуле:

2.Через вписанную окружность…

Также есть формула нахождения площади, через радиус вписанной окружности.

Задача: дан правильный треугольник, в который вписана окружность. Сторона a= 4 см, радиус R = 2,5 см. Рассчитайте площадь через радиус описанной окружности.

Получаем, что площадь треугольника равна 32,9 кв. см

Формула площади правильного вписанного треугольника в окружность

Правильный треугольник. Площадь правильного треугольника

Правильный треугольник — треугольник, у которого все стороны равны. Каждый угол правильного треугольника равен градусов.

Правильный треугольник называют еще равносторонним.

Каждая из высот правильного треугольника является также его медианой и биссектрисой.

Центры вписанной и описанной окружностей правильного треугольника совпадают.

Пусть сторона правильного треугольника равна.

Высота правильного треугольника:

Радиус окружности, вписанной в правильный треугольник: .

Радиус описанной окружности в два раза больше: .

Площадь правильного треугольника: .

Все эти формулы легко доказать. Если вы нацелены на решение задач части — докажите их самостоятельно.

. Сторона правильного треугольника равна. Найдите радиус окружности, вписанной в этот треугольник.

Задача решается в одну строчку. Радиус вписанной окружности.

. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна.

Сравним формулы для высоты правильного треугольника и радиуса вписанной окружности. Очевидно, радиус вписанной окружности равен высоты.

. Сторона правильного треугольника равна. Найдите радиус окружности, описанной около этого треугольника.

Радиус окружности, описанной вокруг правильного треугольника, равен.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика. Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Формула площади правильного вписанного треугольника в окружность

Площадь равностороннего треугольника

Равносторонним, или правильным, называется треугольник, в котором все стороны одинаковой длины, а все три угла равны 60°.

Для нахождения площади равностороннего треугольника можно применять различные формулы.

1.Через сторону…

Учитывая, что все стороны равны и зная их длину, можно легко найти значение по формуле площади правильного треугольника:

Задача: дан равносторонний треугольник со стороной a= 5 см. Найдите площадь

Площадь треугольника будет равна 10,6 квадратных сантиметра

2.Через описанную окружность…

Можно найти значение Через радиус описанной окружности. Он может быть дан условиями или рассчитываться исходя из радиуса вписанной окружности по приведенной выше формуле:

2.Через вписанную окружность…

Также есть формула нахождения площади, через радиус вписанной окружности.

Задача: дан правильный треугольник, в который вписана окружность. Сторона a= 4 см, радиус R = 2,5 см. Рассчитайте площадь через радиус описанной окружности.

Получаем, что площадь треугольника равна 32,9 кв. см

формула площади правильного вписанного треугольника в окружность

poiskvstavropole.ru

Чему равна и как найти площадь равностороннего треугольника

Чему равна и как найти площадь равностороннего треугольника

Равносторонний треугольник — это самый простой правильный многоугольник из возможных. При нахождении ее площади, возникают частные варианты его расчета. Важно знать и понимать признаки и свойства этого вида фигур, для более легкого вычисления этого параметра. Все методы, представленные ниже, достаточно просты в применении, и не потребуют глубокого осмысления.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Признаки и свойства фигуры

Для того чтобы рассчитать его площадь необходимо понимать свойства и признаки, которыми он обладает. Можно выделить следующие основные признаки этой фигуры:

  • Значение величины его углов одинаково во всех случаях и равняется 60 градусам, вне зависимости от размера сторон.
  • Биссектриса, высота и медиана выпущенные из одного угла будут совпадать.
  • Любая сторона равностороннего треугольника равна двум другим.
  • Центр правильного треугольника будет являться центром для вписанной и описанной окружности.
  • Является частным случаем равнобедренного треугольника.

Важно! Если хотя бы один из этих признаков соблюдается, значит, треугольник является равносторонним.

как найти площадь равностороннего треугольника

Равносторонний треугольник

Дополнительно этот частный случай фигуры обладает следующими свойствами:

  • Средняя линия, которая делит две боковые стороны пополам, равняется половине основания, параллельно которому она располагается.
  • Сумма всех его углов не превышает 180 градусов.
  • Радиус вписанной окружности рассчитывается по следующей формуле r = Как найти площадь равностороннего треугольника , а описанной согласно выражению R =Как найти площадь равностороннего треугольника .
  • Радиус описанной окружности в правильном треугольнике в 2 раза больше радиуса вписанной.

Расчет через сторону

Существует множество способов расчета площади этой фигуры. Все они имеют свои преимущества и недостатки. Применяются в зависимости от условий, представленных задаче. Самая популярный способ найти искомое значение для равностороннего треугольника вычисляется через произведение половины сторон и синуса угла между ними, выглядит это следующим образом:Как найти площадь равностороннего треугольника ,  где, a и b – стороны, α – угол между ними.

В случае с равносторонним, этот способ упрощается в значительной степени. Для этого нужно обратиться к рассмотренным выше признакам и свойствам. Исходя из того, что все углы этой фигуры равны, и равняются 60 градусам. Синус 60 градусов, согласно таблице Брадиса, равняется Как найти площадь равностороннего треугольника , преобразовав исходное выражение получаем следующее значение: Как найти площадь равностороннего треугольника .

Учитывая то, что все стороны этой фигуры равны, то преобразованное выражение даст такой результат:Как найти площадь равностороннего треугольника .

Данная формула подойдет отлично подойдет в случае, если известна величина стороны этой фигуры. В таком виде вычислять данный показатель гораздо легче и быстрее.

Те, кто помнит формула Герона, знают, как найти площадь этой фигуры. В процессе преобразования выражение изменится в представленное выше. Площадь этой фигуры по Герону рассчитывается так: Как найти площадь равностороннего треугольника ,  где, a, b, c —стороны, а p — полупериметр (Как найти площадь равностороннего треугольника ). Преобразовывается данное выражение достаточно просто. Необходимо подставить вместо значения p расчет полупериметра и постепенно начать сокращать выражение. Сумму сторон можно представить в виде суммы трех одинаковых сторон и довести сокращения до конца. Математически это выглядит так:

Как найти площадь равностороннего треугольника ;

Как найти площадь равностороннего треугольника ;

Как найти площадь равностороннего треугольника ;

Как найти площадь равностороннего треугольника .

Полученная формула площади и представленные ниже функции могут быть использованы только, в случае, если фигура является правильной, в ином случае не будет давать правильный ответ.

как найти площадь равностороннего треугольника

Вычисление площади треугольника по его стороне

Расчет по высоте

Найти площадь равностороннего треугольника можно также, если известна его высота и сторона. Половина длины высоты умножается на сторону, выбрана может быть любая высота и сторона, ведь согласно свойствам, они все одинаковые: Как найти площадь равностороннего треугольника , где a – это длина стороны. Ее легко запомнить, однако, на практике она применяется достаточно редко.

Если в задаче указана информация о том, что треугольник является равносторонним и известна величина высоты. А чему равна длина стороны неизвестно, то можно воспользоваться формулой, позволяющей ее рассчитать. Найти сторону можно разделив двойную величину высоты на корень квадратный из трех, математически выглядит следующим образом: Как найти площадь равностороннего треугольника . После этого применяется формула площади, где расчеты производятся через сторону, она описана в предыдущем пункте.

Для того чтобы не делать лишних расчетов можно вывести формулу этого показателя сразу же через высоту. Квадрат высоты делится на корень квадратный из трех. Она будет выглядеть так: Как найти площадь равностороннего треугольника . В этом случае можно не применять формулу равнобедренного треугольника через сторону.

как найти площадь равностороннего треугольника

Вычисление площади треугольника по его стороне и высоте

Расчет через окружности

В математике популярен также прием расчета, рассматриваемого в статье, значения через помещение фигуры в окружность или наоборот. Такая окружность называется описанной. Если она находится внутри, то она называется вписанной. Именно в этом разделе возникает большинство вопросов, как найти площадь равностороннего многоугольника с тремя углами.

Описанная окружность обязательно должна проходить через все вершины, вписанная должна проходить через стороны только в одной точке по касательной.

как найти площадь равностороннего треугольника

Чертеж равностороннего треугольника, описанного или вписанного в окружность

Если в условии задачи дан радиус вписанной и описанной окружности, то из них также можно составить выражение, так как вместе они дадут суммарную длину высоты. Как рассчитывается площадь при ее помощи, показано выше: h = R + r .

Преобразовав формулу Как найти площадь равностороннего треугольника ,  применив расчет высоты h = R + r,  можно получить следующее значение: Чему равна и как найти площадь равностороннего треугольника. Данную формула можно упростить еще больше, ведь радиус описанной окружности можно выразить через радиус вписанной. Согласно свойствам этих окружностей R = 2r, где r — это радиус вписанной окружности, R — это радиус описанной. Соответственно площадь правильного треугольника будет высчитываться так: Как найти площадь равностороннего треугольника .

Если же будет дан размер радиуса описанной окружности, то выражение будет выглядеть следующим образом:Как найти площадь равностороннего треугольника .

Использование этих свойств пригодится для расчета стороны фигуры. Для того чтобы ее найти можно воспользоваться выражением Как найти площадь равностороннего треугольника  для описанной окружности, и  Как найти площадь равностороннего треугольника  для вписанной.

Учитывая радиус описанной окружности можно найти искомое значение при помощи возведения стороны в куб, после чего результат делится на радиус, увеличенный в 4 раза. Математически его можно записать следующим образом: Как найти площадь равностороннего треугольника .

Процесс расчета, чему равен показатель площади равностороннего треугольника через любую из предложенных формул не должен вызывать особых затруднений. Для того чтобы успешно справиться с этой задачей не нужно запоминать все указанные способы, достаточно запомнить основные общие формулы расчета, а также свойства и признаки этой фигуры.

Внимание! Для проверки правильности расчетов можно воспользоваться несколькими способами, результаты должны совпасть.

Площадь равностороннего треугольника

 

Площадь равностороннего треугольника, вписанного в окружность

Применив логическое мышление, расчеты с легкостью преобразовываются в частные случаи, коих гораздо больше. Нецелесообразно забивать голову большим количеством нерелевантной информации, лучше развивать причинно-следственную связь для преобразования выражений.

uchim.guru

Площадь треугольника через радиус описанной окружности

Как найти площадь треугольника через радиус описанной окружности?

Площадь треугольника равна частному от деления произведения сторон треугольника на четыре радиуса описанной около треугольника окружности.

ploschad treugolnika cherez radius opisannoy okruzhnosti

 

Формула для нахождения площади треугольника через радиус описанной окружности:

    \[S = \frac{{abc}}{{4R}}\]

Дано: ∆ ABC,

окружность (O; R) — описанная,

AB=c, BC=a, AC=b.

Доказать:

    \[{S_{\Delta ABC}} = \frac{{abc}}{{4R}}\]

Доказательство:

ploschad treugolnika cherez radius

 

1) Обозначим ∠A=α.

Площадь треугольника ABC

по двум сторонам и углу между ними

равна

    \[{S_{\Delta ABC}} = \frac{1}{2}AC \cdot AB \cdot \sin \angle A = \frac{1}{2}bc\sin \alpha .\]

2) По следствию из теоремы синусов,

    \[R = \frac{a}{{2\sin \alpha }}.\]

Выразим из этой формулы синус альфа

    \[\sin \alpha = \frac{a}{{2R}}\]

и подставим полученное выражение в первую формулу

    \[{S_{\Delta ABC}} = \frac{1}{2}bc\sin \alpha = \frac{1}{2}bc \cdot \frac{a}{{2R}} = \frac{{abc}}{{4R}}.\]

Что и требовалось доказать.

Найти площадь треугольника

www.treugolniki.ru