Что такое треугольник. Какими они бывают. Что такое остроугольный треугольник определение


Виды треугольников | Треугольники

В зависимости от величин углов и соотношения длин сторон различают следующие виды треугольников.

Виды треугольников по углам:

  • остроугольные
  • прямоугольные
  • тупоугольные

 

ostrougolnyiytreugolnik

 

Остроугольный треугольник — это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º).

 

 

 

pryamougolnyiytreugolnikПрямоугольный треугольник — это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).

 

 

 

tupougolnyiytreugolnik

 

Тупоугольный треугольник — это треугольник, у которого один угол — тупой (то есть имеет градусную меру больше 90º).

 

 

Виды треугольников по сторонам:

  • равносторонние
  • равнобедренные
  • разносторонние

 

ravnostoronniytreugolnik

 

Равносторонний треугольник (или правильный треугольник) — это треугольник, у которого все три стороны равны.

 

 

 

ravnobedrennyiytreugolnik

 

Равнобедренный треугольник — это треугольник, у которого две стороны равны.

 

 

 

proizvolnyiytreugolnik

 

Разносторонний треугольник — треугольник, все стороны которого имеют разную длину.

 

 

Если в задаче ничего не сказано о виде треугольника, его считают произвольным, то есть разносторонним.

Отрезки равной длины на чертеже отмечают равным количеством черточек:

raznostoronniy treugolnik

разносторонний треугольник

ravnostoronniy treugolnik

равносторонний треугольник

ravnobedrennyiy treugolnik

равнобедренный треугольник

www.treugolniki.ru

Что такое остроугольный треугольник

Треугольник называется остроугольным, потому что у него все углы острые, то есть меньше 90 градусов.Для того, чтобы определить является ли треугольник остроугольным, нужно каждый его угол сравнить с прямым углом. Если хотя бы один из углов рассматриваемого треугольника равен прямому или больше него, то треугольник не будет остроугольным. Пример.Известны некоторые углы двух треугольников FGH и RTE, причем \angle F=38{}^\circ, \angle G=57{}^\circ, \angle R=33{}^\circ, \angle T=47{}^\circ.Определим, являются ли треугольники FGH и RTE остроугольными. Решение.Известно, что сумма углов любого треугольника равна 180 градусов. Нам известны по два угла в каждом треугольнике, следовательно, мы можем найти третий угол каждого из их.Для треугольника FGH:

    \[\angle H=180{}^\circ -\left(\angle F+\angle G\right)=180{}^\circ -\left(38{}^\circ +57{}^\circ \right)=180{}^\circ -95{}^\circ =85{}^\circ <90{}^\circ .\]

Получили, что все углы треугольника FGH являются острыми (меньшими 90 градусов), а значит треугольник FGH — остроугольный.Для треугольника RTE:

    \[\angle E=180{}^\circ -\left(\angle R+\angle T\right)=180{}^\circ -\left(33{}^\circ +47{}^\circ \right)=180{}^\circ -80{}^\circ =100{}^\circ >90{}^\circ .\]

Получили, что все в треугольнике RTE один угол (\angle E) больше 90 градусов, то есть тупой, а значит треугольник RTE — тупоугольный. Ответ. Треугольник FGH — остроугольный.  

ru.solverbook.com

Остроугольный, прямоугольный и тупоугольный треугольники

Теорема о сумме углов треугольника:

Сумма углов треугольника равна 180 градусов.

Из теоремы следует, что если в треугольнике один из углов является прямым или тупым, то сумма двух других углов данного треугольника не больше 90 градусов, а следовательно, каждый из них острый.

По величине углов выделяют следующие виды треугольников.

Определение:

Остроугольный треугольник - это треугольник, у которого все три угла острые.

Определение:

Тупоугольный треугольник - это треугольник, у которого один из углов тупой.

Определение:

Прямоугольный треугольник - это треугольник, у которого один из его углов является прямым.

Нужно знать, что стороны прямоугольного треугольника имеют специальные названия.

Итак, две стороны, образующие прямой угол, называются катетами, а сторона, противолежащая прямому углу, называется гипотенузой.

Если взять прямоугольный лист бумаги и разрезать его, получим:

Получим две модели прямоугольного треугольника.

Пример.

Доказать, что угол с вершиной на окружности, опирающийся на диаметр, - прямой.

Для начала соединим точку В с точкой О, которая является центром нашей окружности. Так как отрезки ОА, ОВ и ОС равны как радиусы окружности, то треугольники АОВ и ВОС являются равнобедренными. А значит, у них углы при основаниях равны. Обозначим градусные меры этих углов m и n. Тогда ∠АОВ=2n, так как он является внешним углом треугольника ВОС, смежным с ∠ВОС. А нам известно, что внешний угол треугольника равен сумме двух внутренних, не смежных с ним.

А так как сумма углов треугольника равна 180 градусов, то:

Что и требовалось доказать.

Пример.

Доказать, что если в равнобедренном треугольнике АВС один из углов равен 60 градусов, то он равносторонний.

Если ∠А при основании равнобедренного треугольника АВС равен 60 градусов, то и второй ∠С при основании равен 60 градусам. Получаем:

Следовательно, треугольник АВС равносторонний.

Пусть ∠В при вершине равнобедренного треугольника АВС равен 60 градусам. Тогда получим:

А так как углы А и С- углы при основании равнобедренного треугольника, то они равны между собой и равны 60 градусам. А следовательно, и в этом случае треугольник АВС является равносторонним. Что и требовалось доказать.

Пример.

Доказать, что в прямоугольном треугольнике АВС медиана, проведённая к гипотенузе АВ, равна половине гипотенузы.

Отложив ∠2=∠1, получаем:

Треугольник ADC является равнобедренным. А следовательно, отрезок DA=DC.

Так как по условию угол АВС - прямой, то:

Известно, что сумма острых углов прямоугольного треугольника равна 90 градусов, то есть:

Тогда из равенств получаем:

Из этого следует, что ВСD равнобедренный треугольник, у которого стороны DB и DC равны.

Следовательно, СD - медиана и СD равняется половине гипотенузы АВ. Что и требовалось доказать.

videouroki.net

Свойства треугольников, формулы и примеры

Все свойства треугольников

В любом треугольнике три угла и три стороны.

Сумма углов любого треугольника равна 180^{\circ}.

Против большего угла треугольника лежит большая сторона.

Треугольники бывают остроугольными (если все его углы острые), тупоугольными (если один из его углов тупой), прямоугольными (если один из его углов прямой).

Основные линии треугольника

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектрисой угла треугольника называется луч, исходящий из вершины треугольника и делящий его пополам.

Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону (или ее продолжение).

Средняя линия треугольника – это отрезок, соединяющий середины двух сторон треугольника и параллельный третьей стороне.

В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

Два треугольника называются равными, если у них равны соответствующие стороны и соответствующие углы.

Признаки равенства треугольников

I признак. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

II признак. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

III признак. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Треугольники называются подобными, если их стороны пропорциональны.

Признаки подобия треугольников

  1. Если два угла одного треугольника раны двум углам другого треугольника, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны двум сторонам другого треугольника, то такие треугольники подобны.

Теорема косинусов. Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

    \[c^{2}=a^{2}+b^{2}-2ab\cos (\overset{\wedge }{\mathop{a;\ b}}\,)\]

Подробнее про теорему косинусов по ссылке.

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности (обобщенная теорема синусов):

    \[\frac{a}{\sin \alpha }=\frac{b}{\sin \beta }=\frac{c}{\sin \gamma }=2R\]

Подробнее про теорему синусов по ссылке.

Площадь треугольника можно вычислить по формулам

1. Через высоту и основание

    \[S=\frac{1}{2}a\cdot h\]

2. По двум сторонам и углу между ними

    \[S=\frac{1}{2}a\cdot b\sin \alpha \]

3. По формуле Герона

    \[S=\sqrt{p(p-a)(p-b)(p-c)}\]

где p – полупериметр треугольника

4. Через радиусы вписанной и описанной окружностей

    \[S=rp\]

где p – полупериметр треугольника, r – радиус вписанной окружности;

    \[S=\frac{abc}{4R}\]

R – радиус описанной окружности.

Примеры решения задач

ru.solverbook.com

Что такое треугольник. Какими они бывают

О том, что такое треугольник, квадрат, куб, нам рассказывает наука геометрия. В современном мире ее изучают в школах все без исключения. Также наукой, которая изучает непосредственно то, что такое треугольник и какие у него свойства, является тригонометрия. Она исследует подробно все явления, связанные с данными геометрическими фигурами. О том, что такое треугольник, мы и поговорим сегодня в нашей статье. Ниже будут описаны их виды, а также некоторые теоремы, связанные с ними.что такое треугольник

Что такое треугольник? Определение

Это плоский многоугольник. Углов он имеет три, что понятно из его названия. Также он имеет три стороны и три вершины, первые из них — это отрезки, вторые — точки. Зная, чему равны два угла, можно найти третий, отняв сумму первых двух от числа 180.

что такое треугольник определение

Какими бывают треугольники?

Их можно классифицировать по различным критериям.

В первую очередь они делятся на остроугольные, тупоугольные и прямоугольные. Первые обладают острыми углами, то есть такими, которые равны менее чем 90 градусам. У тупоугольных один из углов — тупой, то есть такой, который равен более 90 градусам, остальные два — острые. К остроугольным треугольникам относятся также и равносторонние. У таких треугольников все стороны и углы равны. Все они равны 60 градусам, это можно легко вычислить, разделив сумму всех углов (180) на три.

Прямоугольный треугольник

что такое прямоугольный треугольник

Невозможно не поговорить о том, что такое прямоугольный треугольник.

У такой фигуры один угол равен 90 градусам (прямой), то есть две из его сторон расположены перпендикулярно. Остальные два угла являются острыми. Они могут быть равными, тогда он будет равнобедренным. С прямоугольным треугольником связана теорема Пифагора. При помощи ее можно найти третью сторону, зная две первые. Согласно данной теореме, если прибавить квадрат одного катета к квадрату другого, можно получить квадрат гипотенузы. Квадрат же катета можно подсчитать, отняв от квадрата гипотенузы квадрат известного катета. Говоря о том, что такое треугольник, можно вспомнить и о равнобедренном. Это такой, у которого две из сторон равны, также равны и два угла.

Что такое катет и гипотенуза?

Катет — это одна из сторон треугольника, которые образуют угол в 90 градусов. Гипотенуза — это оставшаяся сторона, которая расположена напротив прямого угла. Из него на катет можно опустить перпендикуляр. Отношение прилежащего катета к гипотенузе называется не иначе как косинус, а противоположного — синус.

Он прямоугольный. Его катеты равны трем и четырем, а гипотенуза — пяти. Если вы увидели, что катеты данного треугольника равны трем и четырем, можете не сомневаться, что гипотенуза будет равна пяти. Также по такому принципу можно легко определить, что катет будет равен трем, если второй равен четырем, а гипотенуза - пяти. Чтобы доказать данное утверждение, можно применить теорему Пифагора. Если два катета равны 3 и 4, то 9 + 16 = 25, корень из 25 - это 5, то есть гипотенуза равна 5. Также египетским треугольником называется прямоугольный, стороны которого равны 6, 8 и 10; 9, 12 и 15 и другим числам с соотношением 3:4:5.

что такое треугольник

Каким еще может быть треугольник?

Также треугольники могут быть вписанными и описанными. Фигура, вокруг которой описана окружность, называется вписанной, все ее вершины являются точками, лежащими на окружности. Описанный треугольник — тот, в который вписана окружность. Все его стороны соприкасаются с ней в определенных точках.

Площадь любой фигуры измеряется в квадратных единицах (кв. метрах, кв. миллиметрах, кв. сантиметрах, кв. дециметрах и т. д.) Данную величину можно рассчитать разнообразными способами, в зависимости от вида треугольника. Площадь какой угодно фигуры с углами можно найти, если умножить ее сторону на перпендикуляр, опущенный на нее из противоположного угла, и разделив данную цифру на два. Также можно найти эту величину, если умножить две стороны. Потом умножить это число на синус угла, расположенного между данными сторонами, и разделить это получившееся на два. Зная все стороны треугольника, но не зная его углов, можно найти площадь еще и другим способом. Для этого нужно найти половину периметра. Затем поочередно отнять от данного числа разные стороны и перемножить полученные четыре значения. Далее найти корень квадратный из числа, которое вышло. Площадь вписанного треугольника можно отыскать, перемножив все стороны и разделив полученное число на радиус окружности, которая описана вокруг него, умноженный на четыре.

описанный треугольник

Площадь описанного треугольника находится таким образом: половину периметра умножаем на радиус окружности, которая в него вписана. Если треугольник равносторонний, то его площадь можно найти следующим образом: сторону возводим в квадрат, умножаем полученную цифру на корень из трех, далее делим это число на четыре. Похожим образом можно вычислить высоту треугольника, у которого все стороны равны, для этого одну из них нужно умножить на корень из трех, а потом разделить данное число на два.

Теоремы, связанные с треугольником

Основными теоремами, которые связаны с данной фигурой, являются теорема Пифагора, описанная выше, теоремы синусов и косинусов. Вторая (синусов) заключается в том, что, если разделить любую сторону на синус противоположного ей угла, то можно получить радиус окружности, которая описана вокруг него, умноженный на два. Третья (косинусов) заключается в том, что, если от суммы квадратов двух сторон отнять их же произведение, умноженное на два и на косинус угла, расположенного между ними, то получится квадрат третьей стороны.

Треугольник Дали — что это?

треугольник дали

Многие, столкнувшись с этим понятием, сначала думают, что это какое-то определение в геометрии, но это совсем не так. Треугольник Дали — это общее название трех мест, которые тесно связаны с жизнью знаменитого художника. «Вершинами» его являются дом, в котором Сальвадор Дали жил, замок, который он подарил своей жене, а также музей сюрреалистических картин. Во время экскурсии по этим местам можно узнать много интереснейших фактов об этом своеобразном креативном художнике, известном во всем мире.

fb.ru

Треугольник, все про треугольники

Определение треугольника

Треугольник

В любом треугольнике три угла и три стороны.

Против большего угла треугольника лежит большая сторона.

Виды треугольников

Треугольники бывают

Треугольник называется

Основные линии треугольника

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектрисой угла треугольника называется луч, исходящий из вершины треугольника и делящий его пополам.

Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону (или ее продолжение).

Средняя линия треугольника – это отрезок, соединяющий середины двух сторон треугольника и параллельный третьей стороне.

В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

Два треугольника называются равными, если у них равны соответствующие стороны и соответствующие углы.

Признаки равенства треугольников

I признак (по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

I признак равенства треугольников

II признак (по стороне и прилежащим углам). Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

II признак равенства треугольников

III признак (по трем сторонам). Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

III признак равенства треугольников

Подробнее про признаки равенства треугольников читайте по ссылке.

Признаки подобия треугольников

Треугольники называются подобными, если их стороны пропорциональны.

Подобные треугольники

I признак. Если два угла одного треугольника раны двум углам другого треугольника, то такие треугольники подобны.

II признак. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то такие треугольники подобны.

III признак. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Подробнее про признаки подобия треугольников читайте по ссылке.

Теоремы треугольников

Для любого треугольника справедливы следующие теоремы.

Подробнее про теорему косинусов читайте по ссылке.

Подробнее про теорему синусов читайте по ссылке.

Примеры решения задач

ru.solverbook.com

Что такое треугольник

Что такое треугольник

Треугольную форму имеет множество реальных объектов. Например, в виде этой фигуры может быть выполнен журнальный стол, также обладают этой формой некоторые детали механических устройств. Знать определение и свойства треугольника необходимо каждому школьнику и студенту. Треугольником называют многоугольник, имеющий три стороны и три угла. Известны три вида треугольников: остроугольные, тупоугольные и прямоугольные. Первые из них имеют острые углы, у вторых всегда один из углов тупой, а третьи обязательно включают в себя один прямой и два острых угла. У прямоугольных треугольников большая сторона является гипотенузой, а остальные - катетами. Если прямоугольный треугольник одновременно является и равнобедренным, то углы при катетах равны 45. В остальных случаях прямоугольные треугольники имеют один прямой угол, а два остальных равны 30 и 60 градусам.Кроме того, треугольники также принято делить на равносторонние и равнобедренные. Равносторонними называются такие треугольники, у которых все углы и стороны одинаковы. У равносторонних треугольников все углы равны 60 градусам. Большинство изометрических фигур в основании имеют равносторонние, или как их еще называют, правильные треугольники. Например, основанием пирамиды может быть равносторонний треугольник. У правильного треугольника медиана, высота и биссектриса равны между собой.Помимо этого, существуют равнобедренные треугольники, у которых две боковые стороны равны. При этом, углы при основании таких фигур также имеют одинаковое значение. Биссектриса и медиана, проведенные к основанию такого треугольника, являются одновременно и высотами.Из свойств треугольника следует ряд теорем и формул. Например, если в задаче дан прямоугольный треугольник, то формула, связывающая между собой его гипотенузу и катеты, выглядит следующим образом:с^2=a^2+b^2, где с - гипотенуза, a и b - катеты.Это соотношение установлено теоремой Пифагора. Оно применимо лишь для прямоугольных треугольников. Однако, также существует обобщенная теорема Пифагора, которая используется и при вычислении параметров произвольных треугольников:a^2=b^2+c^2-2bc cos α.При помощи этой формулы, зная две стороны треугольника и угол между ними, можно найти третью сторону.У треугольника, как и у любой другой фигуры, имеются и другие параметры, в частности, площадь. Площадь треугольника равна произведению половины основания на высоту:S=1/2a*h, где a - основание треугольника, h - высота.

completerepair.ru